Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Open Forum Infect Dis ; 8(6): ofab124, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34183978

RESUMO

BACKGROUND: There is an urgent need for accurate, rapid, inexpensive biomarkers that can differentiate coronavirus disease 2019 (COVID-19) from bacterial pneumonia. We assess the role of the ferritin-to-procalcitonin (F/P) ratio to classify pneumonia cases into those due to COVID-19 vs those due to bacterial pathogens. METHODS: This multicenter case-control study compared patients with COVID-19 with those with bacterial pneumonia, admitted between March 1 and May 31, 2020. Patients with COVID-19 and bacterial pneumonia co-infection were excluded. The F/P in patients with COVID-19 vs with bacterial pneumonia were compared. Receiver operating characteristic curve analysis determined the sensitivity and specificity of various cutoff F/P values for COVID-19 vs bacterial pneumonia. RESULTS: A total of 242 COVID-19 pneumonia cases and 34 bacterial pneumonia controls were included. Patients with COVID-19 pneumonia had a lower mean age (57.1 vs 64.4 years; P = .02) and a higher body mass index (30.74 vs 27.15 kg/m2; P = .02) compared with patients with bacterial pneumonia. Cases and controls had a similar proportion of women (47% vs 53%; P = .5), and COVID-19 patients had a higher prevalence of diabetes mellitus (32.6% vs 12%; P = .01). The median F/P was significantly higher in patients with COVID-19 (4037.5) compared with the F/P in bacterial pneumonia (802; P < .001). An F/P ≥877, used to diagnose COVID-19, resulted in a sensitivity of 85% and a specificity of 56%, with a positive predictive value of 93.2% and a likelihood ratio of 1.92. In multivariable analyses, an F/P ≥877 was associated with greater odds of identifying a COVID-19 case (odds ratio, 11.27; 95% CI, 4-31.2; P < .001). CONCLUSIONS: An F/P ≥877 increases the likelihood of COVID-19 pneumonia compared with bacterial pneumonia.

2.
Ther Adv Infect Dis ; 7: 2049936120933076, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32577236

RESUMO

Currently, there are no proven pharmacologic interventions to reduce the clinical impact and prevent complications of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, the cause of the ongoing Coronavirus Disease of 2019 (COVID-19) pandemic. Selecting specific pharmacological targets for the treatment of viral pathogens has traditionally relied in blockage of specific steps in their replicative lifecycle in human cells. However, an alternative approach is reducing the molecular cleavage of the viral surface spike protein of SARS-CoV-2 to prevent viral entry into epithelial cells.

3.
medRxiv ; 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33106821

RESUMO

IMPORTANCE: There is a need to develop tools to differentiate COVID-19 from bacterial pneumonia at the time of clinical presentation before diagnostic testing is available. OBJECTIVE: To determine if the Ferritin-to-Procalcitonin ratio (F/P) can be used to differentiate COVID-19 from bacterial pneumonia. DESIGN: This case-control study compared patients with either COVID-19 or bacterial pneumonia, admitted between March 1 and May 31, 2020. Patients with COVID-19 and bacterial pneumonia co-infection were excluded. SETTING: A multicenter study conducted at three hospitals that included UCHealth and Phoebe Putney Memorial Hospital in the United States, and Yichang Central People's Hospital in China. PARTICIPANTS: A total of 242 cases with COVID-19 infection and 34 controls with bacterial pneumonia. MAIN OUTCOMES AND MEASURES: The F/P in patients with COVID-19 or with bacterial pneumonia were compared. Receiver operating characteristic analysis determined the sensitivity and specificity of various cut-off F/P values for the diagnosis of COVID-19 versus bacterial pneumonia. RESULTS: Patients with COVID-19 pneumonia had a lower mean age (57.11 vs 64.4 years, p=0.02) and a higher BMI (30.74 vs 27.15 kg/m 2 , p=0.02) compared to patients with bacterial pneumonia. Cases and controls had a similar proportion of women (47% vs 53%, p=0.5) and COVID-19 patients had a higher prevalence of diabetes mellitus (32.6% vs 12%, p=0.01). The median F/P was significantly higher in patients with COVID-19 (4037.5) compared to the F/P in bacterial pneumonia (802, p<0.001). An F/P ≥ 877 used to diagnose COVID-19 resulted in a sensitivity of 85% and a specificity of 56%, with a positive predictive value of 93.2%, and a likelihood ratio of 1.92. In multivariable analyses, an F/P ≥ 877 was associated with greater odds of identifying a COVID-19 case (OR: 11.27, CI: 4-31.2, p<0.001). CONCLUSIONS AND RELEVANCE: An F/P ≥ 877 increases the likelihood of COVID-19 pneumonia compared to bacterial pneumonia. Further research is needed to determine if obtaining ferritin and procalcitonin simultaneously at the time of clinical presentation has improved diagnostic value. Additional questions include whether an increased F/P and/or serial F/P associates with COVID-19 disease severity or outcomes.

4.
Dent Mater ; 30(4): 449-55, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24553250

RESUMO

OBJECTIVES: Thiol- and allyl-functionalized siloxane oligomers are synthesized and evaluated for use as a radical-mediated, rapid set elastomeric dental impression material. Thiol-ene siloxane formulations are crosslinked using a redox-initiated polymerization scheme, and the mechanical properties of the thiol-ene network are manipulated through the incorporation of varying degrees of plasticizer and kaolin filler. Formulations with medium and light body consistencies are further evaluated for their ability to accurately replicate features on both the gross and microscopic levels. We hypothesize that thiol-ene functionalized siloxane systems will exhibit faster setting times and greater detail reproduction than commercially available polyvinylsiloxane (PVS) materials of comparable consistencies. METHODS: Thiol-ene functionalized siloxane mixtures formulated with varying levels of redox initiators, plasticizer, and kaolin filler are made and evaluated for their polymerization speed (FTIR), consistency (ISO4823.9.2), and surface energy (goniometer). Feature replication is evaluated quantitatively by SEM. The Tg, storage modulus, and creep behavior are determined by DMA. RESULTS: Increasing redox initiation rate increases the polymerization rate but at high levels also limits working time. Combining 0.86 wt% oxidizing agent with up to 5 wt% plasticizer gave a working time of 3 min and a setting time of 2 min. The selected medium and light body thiol-ene formulations also achieved greater qualitative detail reproduction than the commercial material and reproduced micrometer patterns with 98% accuracy. SIGNIFICANCE: Improving detail reproduction and setting speed is a primary focus of dental impression material design and synthesis. Radical-mediated polymerizations, particularly thiol-ene reactions, are recognized for their speed, reduced shrinkage, and 'click' nature.


Assuntos
Compostos Alílicos/síntese química , Materiais para Moldagem Odontológica/síntese química , Polímeros/síntese química , Siloxanas/síntese química , Reagentes de Sulfidrila/síntese química , Reagentes de Ligações Cruzadas , Elastômeros , Caulim/química , Teste de Materiais , Polimerização
5.
Polym Chem ; 4(4): 1167-1175, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23565125

RESUMO

The unique formation-structure-property attributes and reaction behavior of the thiol-ene "click" reaction have been explored extensively for photochemically and thermally initiated reactions but have been much less explored for redox initiation. Therefore, the objective of this work is to characterize fully the impact of the initiation system, monomer structure, degree of functionalization, and inhibitor level on the redox-mediated thiol-ene polymerization rate and behavior. Moreover, this study confirms the ability of redox initiation to achieve full conversion of desired thiol-ene "click" products for small molecules in solution. For the multifunctional thiol-ene systems, polymerization rate was shown to be comparable to photo- and thermally initiated systems, but with the additional advantages of unlimited depth of cure and mild reaction conditions. Additionally, the network properties of the redox-initiated thiol-ene systems were on par with a photocured material formulated with identical monomers and radical initiating potential. Lastly, control over the polymerization rate and preceding induction period was garnered from the concentration of inhibitor included in the reaction mixture. The mechanism of action of quinone inhibition in redox-mediated thiol-ene polymerizations is shown to depend on both the presence of an aniline reducing agent and the concentration of inhibitor, with quinone concentrations in great excess of oxidizing agent concentrations actually leading to heightened polymerization rates when aniline is present.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA