Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Immunol ; 22(12): 1577-1589, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811546

RESUMO

Single-cell genomics technology has transformed our understanding of complex cellular systems. However, excessive cost and a lack of strategies for the purification of newly identified cell types impede their functional characterization and large-scale profiling. Here, we have generated high-content single-cell proteo-genomic reference maps of human blood and bone marrow that quantitatively link the expression of up to 197 surface markers to cellular identities and biological processes across all main hematopoietic cell types in healthy aging and leukemia. These reference maps enable the automatic design of cost-effective high-throughput cytometry schemes that outperform state-of-the-art approaches, accurately reflect complex topologies of cellular systems and permit the purification of precisely defined cell states. The systematic integration of cytometry and proteo-genomic data enables the functional capacities of precisely mapped cell states to be measured at the single-cell level. Our study serves as an accessible resource and paves the way for a data-driven era in cytometry.


Assuntos
Células Sanguíneas/metabolismo , Células da Medula Óssea/metabolismo , Separação Celular , Citometria de Fluxo , Perfilação da Expressão Gênica , Proteoma , Proteômica , Análise de Célula Única , Transcriptoma , Fatores Etários , Células Sanguíneas/imunologia , Células Sanguíneas/patologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Células Cultivadas , Bases de Dados Genéticas , Envelhecimento Saudável/genética , Envelhecimento Saudável/imunologia , Envelhecimento Saudável/metabolismo , Humanos , Leucemia/genética , Leucemia/imunologia , Leucemia/metabolismo , Leucemia/patologia , RNA-Seq , Biologia de Sistemas
2.
Ann Hematol ; 103(4): 1221-1233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413410

RESUMO

In low-risk Myelodysplastic Neoplasms (MDS), increased activity of apoptosis-promoting factors such as tumor necrosis factor (TNFα) and pro-apoptotic Fas ligand (CD95L) have been described as possible pathomechanisms leading to impaired erythropoiesis. Asunercept (APG101) is a novel therapeutic fusion protein blocking CD95, which has previously shown partial efficacy in reducing transfusion requirement in a clinical phase I trial for low-risk MDS patients (NCT01736436; 2012-11-26). In the current study we aimed to evaluate the effect of Asunercept therapy on the clonal bone marrow composition to identify potential biomarkers to predict response. Bone marrow samples of n = 12 low-risk MDS patients from the above referenced clinical trial were analyzed by serial deep whole exome sequencing in a total of n = 58 time points. We could distinguish a mean of 3.5 molecularly defined subclones per patient (range 2-6). We observed a molecular response defined as reductions of dominant clone sizes by a variant allele frequency (VAF) decrease of at least 10% (mean 20%, range: 10.5-39.2%) in dependency of Asunercept treatment in 9 of 12 (75%) patients. Most of this decline in clonal populations was observed after completion of 12 weeks treatment. Particularly early and pronounced reductions of clone sizes were found in subclones driven by mutations in genes involved in regulation of methylation (n = 1 DNMT3A, n = 1 IDH2, n = 1 TET2). Our results suggest that APG101 could be efficacious in reducing clone sizes of mutated hematopoietic cells in the bone marrow of Myelodysplastic Neoplasms, which warrants further investigation.


Assuntos
Síndromes Mielodisplásicas , Neoplasias , Humanos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Células Clonais/patologia , Medula Óssea/patologia , Apoptose , Mutação
3.
Blood ; 138(8): 649-661, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34157074

RESUMO

Cohesin is a multisubunit protein complex that forms a ring-like structure around DNA. It is essential for sister chromatid cohesion, chromatin organization, transcriptional regulation, and DNA damage repair and plays a major role in dynamically shaping the genome architecture and maintaining DNA integrity. The core complex subunits STAG2, RAD21, SMC1, and SMC3, as well as its modulators PDS5A/B, WAPL, and NIPBL, have been found to be recurrently mutated in hematologic and solid malignancies. These mutations are found across the full spectrum of myeloid neoplasia, including pediatric Down syndrome-associated acute megakaryoblastic leukemia, myelodysplastic syndromes, chronic myelomonocytic leukemia, and de novo and secondary acute myeloid leukemias. The mechanisms by which cohesin mutations act as drivers of clonal expansion and disease progression are still poorly understood. Recent studies have described the impact of cohesin alterations on self-renewal and differentiation of hematopoietic stem and progenitor cells, which are associated with changes in chromatin and epigenetic state directing lineage commitment, as well as genomic integrity. Herein, we review the role of the cohesin complex in healthy and malignant hematopoiesis. We discuss clinical implications of cohesin mutations in myeloid malignancies and discuss opportunities for therapeutic targeting.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Neoplasias Hematológicas , Leucemia Mieloide , Mutação , Transtornos Mieloproliferativos , Proteínas de Neoplasias , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética , Regulação Leucêmica da Expressão Gênica , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/terapia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Leucemia Mieloide/terapia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Transtornos Mieloproliferativos/terapia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Coesinas
4.
Haematologica ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37916386

RESUMO

Inhibitors of anti-apoptotic BCL-2 family proteins in combination with chemotherapy and hypomethylating agents (HMAs) are promising therapeutic approaches in acute myeloid leukemia (AML) and high-risk myelodysplastic syndromes (MDS). Alvocidib, a cyclin-dependent kinase 9 (CDK9) inhibitor and indirect transcriptional repressor of the anti-apoptotic factor MCL-1, has previously shown clinical activity in AML. Availability of biomarkers for response to the alvocidib + 5- AZA could also extend the rationale of this treatment concept to high-risk MDS. In this study, we performed a comprehensive in vitro assessment of alvocidib and 5-AZA effects in n=45 high-risk MDS patients. Our data revealed additive cytotoxic effects of the combination treatment. Mutational profiling of MDS samples identified ASXL1 mutations as predictors of response. Further, increased response rates were associated with higher gene-expression of the pro-apoptotic factor NOXA in ASXL1 mutated samples. The higher sensitivity of ASXL1 mutant cells to the combination treatment was confirmed in vivo in ASXL1Y588X transgenic mice. Overall, our study demonstrated augmented activity for the alvocidib + 5-AZA combination in higher-risk MDS and identified ASXL1 mutations as a biomarker of response for potential stratification studies.

5.
Br J Haematol ; 192(5): 879-891, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33486765

RESUMO

Ineffective erythropoiesis and iron overload are common in myelodysplastic syndromes (MDS). Erythroferrone (ERFE) and growth/differentiation factor 15 (GDF15) are two regulators of iron homeostasis produced by erythroid progenitors. Elevated systemic levels of ERFE and GDF15 in MDS are associated with dysregulated iron metabolism and iron overload, which is especially pronounced in MDS with SF3B1 gene mutations. However, the role of ERFE and GDF15 in MDS pathogenesis and their influence on disease progression are largely unknown. Here, we analyzed the expression of ERFE and GDF15 in CD71+ erythroid progenitors of n = 111 MDS patients and assessed their effects on patient survival. The expression of ERFE and GDF15 in MDS was highly aberrant. Unexpectedly, ERFE expression in erythroprogenitors was highly relevant for MDS prognosis and independent of International Prognostic Scoring System (IPSS) stratification. Although ERFE expression was increased in patients with SF3B1 mutations, it predicted overall survival (OS) in both the SF3B1wt and SF3B1mut subgroups. Of note, ERFE overexpression predicted superior OS in the IPSS low/Int-1 subgroup and in patients with normal karyotype. Similar observations were made for GDF15, albeit not reaching statistical significance. In summary, our results revealed a strong association between ERFE expression and MDS outcome, suggesting a possible involvement of ERFE in molecular MDS pathogenesis.


Assuntos
Antígenos CD/análise , Células Precursoras Eritroides/metabolismo , Síndromes Mielodisplásicas/metabolismo , Hormônios Peptídicos/biossíntese , Receptores da Transferrina/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Precursoras Eritroides/química , Feminino , Fator 15 de Diferenciação de Crescimento/biossíntese , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/mortalidade , Síndromes Mielodisplásicas/terapia , Hormônios Peptídicos/genética , Fosfoproteínas/genética , Modelos de Riscos Proporcionais , Fatores de Processamento de RNA/genética , Resultado do Tratamento , Adulto Jovem
6.
Haematologica ; 106(11): 2906-2917, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054116

RESUMO

Somatic mutations in genes coding for splicing factors, e.g. SF3B1, U2AF1, SRSF2, and others are found in approximately 50% of patients with Myelodysplastic Syndromes (MDS). These mutations have been predicted to frequently occur early in the mutational hierarchy of the disease therefore making them particularly attractive potential therapeutic targets. Recent studies in cell lines engineered to carry splicing factor mutations have revealed a strong association with elevated levels of DNA:RNA intermediates (R-loops) and a dependency on proper ATR function. However, data confirming this hypothesis in a representative cohort of primary MDS patient samples have so far been missing. Using CD34+ cells isolated from MDS patients with and without splicing factor mutations as well as healthy controls we show that splicing factor mutation-associated R-loops lead to elevated levels of replication stress and ATR pathway activation. Moreover, splicing factor mutated CD34+ cells are more susceptible to pharmacological inhibition of ATR resulting in elevated levels of DNA damage, cell cycle blockade, and cell death. This can be enhanced by combination treatment with low-dose splicing modulatory compound Pladienolide B. We further confirm the direct association of R-loops and ATR sensitivity with the presence of a splicing factor mutation using lentiviral overexpression of wild-type and mutant SRSF2 P95H in cord blood CD34+ cells. Collectively, our results from n=53 MDS patients identify replication stress and associated ATR signaling to be critical pathophysiological mechanisms in primary MDS CD34+ cells carrying splicing factor mutations, and provide a preclinical rationale for targeting ATR signaling in these patients.


Assuntos
Síndromes Mielodisplásicas , Fosfoproteínas , Humanos , Mutação , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Fosfoproteínas/genética , Splicing de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fator de Processamento U2AF/genética
7.
Ann Hematol ; 100(6): 1463-1471, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33903952

RESUMO

Myelodysplastic syndrome (MDS) with isolated deletion of chromosome 5q (MDS del5q) is a distinct subtype of MDS with quite favorable prognosis and excellent response to treatment with lenalidomide. Still, a relevant percentage of patients do not respond to lenalidomide and even experience progression to acute myeloid leukemia (AML). In this study, we aimed to investigate whether global DNA methylation patterns could predict response to lenalidomide. Genome-wide DNA methylation analysis using Illumina 450k methylation arrays was performed on n=51 patients with MDS del5q who were uniformly treated with lenalidomide in a prospective multicenter trial of the German MDS study group. To study potential direct effects of lenalidomide on DNA methylation, 17 paired samples pre- and post-treatment were analyzed. Our results revealed no relevant effect of lenalidomide on methylation status. Furthermore, methylation patterns prior to therapy could not predict lenalidomide response. However, methylation clustering identified a group of patients with a trend towards inferior overall survival. These patients showed hypermethylation of several interesting target genes, including genes of relevant signaling pathways, potentially indicating the evaluation of novel therapeutic targets.


Assuntos
Antineoplásicos/uso terapêutico , Metilação de DNA/efeitos dos fármacos , Lenalidomida/uso terapêutico , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Deleção Cromossômica , Cromossomos Humanos Par 5/genética , Feminino , Humanos , Lenalidomida/farmacologia , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
8.
Haematologica ; 104(7): 1355-1364, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30655375

RESUMO

In myelodysplastic syndromes with a partial deletion of the long arm of chromosome 5, del(5q), lenalidomide is believed to reverse anergic T-cell immunity in the bone marrow resulting in suppression of the del(5q) clone. In this study we used next-generation sequencing of immunoglobulin heavy chain (IGH) and T-cell receptor beta (TRB) rearrangements in bone marrow-residing and peripheral blood-circulating lymphocytes of patients with del(5q) myelodysplastic syndromes to assess the immune architecture and track adaptive immune responses during treatment with lenalidomide. The baseline bone marrow B-cell space in patients was comparable to that of age-matched healthy controls in terms of gene usage and IGH clonality, but showed a higher percentage of hypermutated IGH sequences, indicating an expanded number of antigen-experienced B lineage cells. Bone marrow B lineage clonality decreased significantly and hypermutated IGH clones normalized upon lenalidomide treatment, well in line with the proliferative effect on healthy antigen-inexperienced B-cell precursors previously described for this drug. The T-cell space in bone marrow of patients with del(5q) myelodysplastic syndromes showed higher TRB clonality compared to that of healthy controls. Upon lenalidomide treatment, myelodysplastic syndrome-specific T-cell clusters with low to medium spontaneous generation probabilities emerged; these clusters were shared across patients, indicating a common antigen-driven T-cell response pattern. Hence, we observed B lineage diversification and generation of new, antigen-dependent T-cell clusters, compatible with a model of adaptive immunity induced against the del(5q) clone by lenalidomide. Overall, this supports the concept that lenalidomide not only alters the functional T-cell state, but also the composition of the T- and B-cell repertoires in del(5q) myelodysplastic syndromes.


Assuntos
Antígenos de Neoplasias/imunologia , Medula Óssea/imunologia , Cromossomos Humanos Par 5/genética , Lenalidomida/uso terapêutico , Síndromes Mielodisplásicas/imunologia , Subpopulações de Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Idoso , Antineoplásicos/uso terapêutico , Medula Óssea/efeitos dos fármacos , Estudos de Casos e Controles , Deleção Cromossômica , Feminino , Seguimentos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Prognóstico , Subpopulações de Linfócitos T/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
9.
Blood ; 128(9): 1246-59, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27268087

RESUMO

Clonal evolution is believed to be a main driver for progression of various types of cancer and implicated in facilitating resistance to drugs. However, the hierarchical organization of malignant clones in the hematopoiesis of myelodysplastic syndromes (MDS) and its impact on response to drug therapy remain poorly understood. Using high-throughput sequencing of patient and xenografted cells, we evaluated the intratumoral heterogeneity (n= 54) and reconstructed mutational trajectories (n = 39) in patients suffering from MDS (n = 52) and chronic myelomonocytic leukemia-1 (n = 2). We identified linear and also branching evolution paths and confirmed on a patient-specific level that somatic mutations in epigenetic regulators and RNA splicing genes frequently constitute isolated disease-initiating events. Using high-throughput exome- and/or deep-sequencing, we analyzed 103 chronologically acquired samples from 22 patients covering a cumulative observation time of 75 years MDS disease progression. Our data revealed highly dynamic shaping of complex oligoclonal architectures, specifically upon treatment with lenalidomide and other drugs. Despite initial clinical response to treatment, patients' marrow persistently remained clonal with rapid outgrowth of founder-, sub-, or even fully independent clones, indicating an increased dynamic rate of clonal turnover. The emergence and disappearance of specific clones frequently correlated with changes of clinical parameters, highlighting their distinct and far-reaching functional properties. Intriguingly, increasingly complex mutational trajectories are frequently accompanied by clinical progression during the course of disease. These data substantiate a need for regular broad molecular monitoring to guide clinical treatment decisions in MDS.


Assuntos
Hematopoese/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/terapia , Animais , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Transplante de Neoplasias
10.
J Med Genet ; 54(9): 640-650, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28600436

RESUMO

BACKGROUND: Cytogenetic aberrations such as deletion of chromosome 5q (del(5q)) represent key elements in routine clinical diagnostics of haematological malignancies. Currently established methods such as metaphase cytogenetics, FISH or array-based approaches have limitations due to their dependency on viable cells, high costs or semi-quantitative nature. Importantly, they cannot be used on low abundance DNA. We therefore aimed to establish a robust and quantitative technique that overcomes these shortcomings. METHODS: For precise determination of del(5q) cell fractions, we developed an inexpensive multiplex-PCR assay requiring only nanograms of DNA that simultaneously measures allelic imbalances of 12 independent short tandem repeat markers. RESULTS: Application of this method to n=1142 samples from n=260 individuals revealed strong intermarker concordance (R²=0.77-0.97) and reproducibility (mean SD: 1.7%). Notably, the assay showed accurate quantification via standard curve assessment (R²>0.99) and high concordance with paired FISH measurements (R²=0.92) even with subnanogram amounts of DNA. Moreover, cytogenetic response was reliably confirmed in del(5q) patients with myelodysplastic syndromes treated with lenalidomide. While the assay demonstrated good diagnostic accuracy in receiver operating characteristic analysis (area under the curve: 0.97), we further observed robust correlation between bone marrow and peripheral blood samples (R²=0.79), suggesting its potential suitability for less-invasive clonal monitoring. CONCLUSIONS: In conclusion, we present an adaptable tool for quantification of chromosomal aberrations, particularly in problematic samples, which should be easily applicable to further tumour entities.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 5/genética , Repetições de Microssatélites , Reação em Cadeia da Polimerase Multiplex/métodos , Síndromes Mielodisplásicas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , DNA/genética , Humanos , Lenalidomida , Leucemia Mieloide Aguda/genética , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/tratamento farmacológico , Reprodutibilidade dos Testes , Talidomida/análogos & derivados , Talidomida/uso terapêutico , Dissomia Uniparental
11.
Eur J Haematol ; 98(3): 302-310, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27862375

RESUMO

Patients with monoclonal gammopathy of undetermined significance (MGUS) have a higher risk for the development of concomitant primary cancers such as multiple myeloma (MM) and myelodysplastic syndrome (MDS). We report the case of patient initially suffering from MGUS of the IgG lambda subtype for more than 10 yr, which evolved to MM and MDS with deletion (5q) with severe pancytopenia. Due to pancytopenia, he received dose-reduced treatment with lenalidomide and dexamethasone. He achieved an ongoing transfusion independency after about 1 month of treatment. Bone marrow taken 14 months after start of treatment showed a complete cytogenetic response of the del(5q) clone and a plasma cell infiltration below 5%. In contrast to the development of MM in MGUS patients, the subsequent occurrence of MDS after diagnosis of MGUS is infrequent. Moreover, the biological association of MDS with MGUS is not sufficiently understood, but the non-treatment-related occurrence supports the pathogenetic role of pre-existing alterations of stem cells. Here, we summarize data on concomitant MDS and MGUS/MM with particular emphasis on molecular aspects.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 5 , Gamopatia Monoclonal de Significância Indeterminada/diagnóstico , Gamopatia Monoclonal de Significância Indeterminada/genética , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Medula Óssea/patologia , Progressão da Doença , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Masculino , Gamopatia Monoclonal de Significância Indeterminada/terapia , Mutação , Síndromes Mielodisplásicas/tratamento farmacológico , Proteínas Repressoras/genética
12.
Mol Hum Reprod ; 20(9): 919-28, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24950685

RESUMO

Environmental contaminants binding to transcription factors, such as the aryl hydrocarbon receptor (AhR) and the alpha and gamma peroxisome proliferator-activated receptors (PPARs), contribute to adverse effects on the reproductive system. Expressing both the AhR and PPARs, the human granulosa cell line KGN offers the opportunity to investigate the regulatory mechanisms involved in receptor crosstalk, independent of overriding hormonal control. The aim of the present study was to investigate the impact of two environmental contaminants, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an AhR ligand) and di-(2-ethylhexyl) phthalate (DEHP, a PPAR ligand), on gonadotrophin sensitivity and estrogen synthesis in KGN cells. Accumulation of the DEHP metabolite mono-(2-ethylhexyl) phthalate (MEHP) in DEHP-exposed cells was measured by high-performance liquid chromatography mass spectrometry, thereby demonstrating DEHP metabolism to MEHP by KGN cells. By employing TCDD ( an AhR agonist), rosiglitazone (a PPARgamma agonist) or bezafibrate (a PPARalpha agonist), the presence of a functional AhR and PPAR cascade was confirmed in KGN cells. Cytotoxicity testing revealed no effect on KGN cell proliferation for the concentrations of TCDD and DEHP used in the current study. FSH-stimulated cells were exposed to TCDD, DEHP or a mix of both and estradiol synthesis was measured by enzyme-linked immunosorbent assay and gene expression by quantitative RT-PCR. Exposure decreased estradiol synthesis (TCDD, DEHP, mix) and reduced the mRNA expression of CYP19 aromatase (DEHP, mix) and FSHR (DEHP). DEHP induced the expression of the alpha and gamma PPARs and AhR, an effect which was inhibited by selective PPAR antagonists. Studies in the human granulosa cell line KGN show that the action of endocrine-disrupting chemicals may be due to a direct activation of AhR, for example by TCDD, and by a transactivation via PPARs, for example by DEHP, inducing subsequent transcriptional changes with a broad range of effects on granulosa cell function.


Assuntos
Dietilexilftalato/farmacologia , Disruptores Endócrinos/farmacologia , Poluentes Ambientais/farmacologia , Células da Granulosa/efeitos dos fármacos , Proliferadores de Peroxissomos/farmacologia , Dibenzodioxinas Policloradas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bezafibrato/farmacologia , Biotransformação , Proliferação de Células/efeitos dos fármacos , Dietilexilftalato/análogos & derivados , Dietilexilftalato/antagonistas & inibidores , Dietilexilftalato/metabolismo , Disruptores Endócrinos/química , Disruptores Endócrinos/metabolismo , Poluentes Ambientais/antagonistas & inibidores , Poluentes Ambientais/metabolismo , Estradiol/metabolismo , Feminino , Hormônio Foliculoestimulante/antagonistas & inibidores , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/metabolismo , Humanos , Ligantes , PPAR alfa/agonistas , PPAR alfa/antagonistas & inibidores , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , PPAR gama/genética , PPAR gama/metabolismo , Proliferadores de Peroxissomos/antagonistas & inibidores , Proliferadores de Peroxissomos/metabolismo , Plastificantes/química , Plastificantes/metabolismo , Plastificantes/farmacologia , Dibenzodioxinas Policloradas/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Rosiglitazona , Tiazolidinedionas/farmacologia
13.
Nat Genet ; 56(6): 1134-1146, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806714

RESUMO

The functional impact and cellular context of mosaic structural variants (mSVs) in normal tissues is understudied. Utilizing Strand-seq, we sequenced 1,133 single-cell genomes from 19 human donors of increasing age, and discovered the heterogeneous mSV landscapes of hematopoietic stem and progenitor cells. While mSVs are continuously acquired throughout life, expanded subclones in our cohort are confined to individuals >60. Cells already harboring mSVs are more likely to acquire additional somatic structural variants, including megabase-scale segmental aneuploidies. Capitalizing on comprehensive single-cell micrococcal nuclease digestion with sequencing reference data, we conducted high-resolution cell-typing for eight hematopoietic stem and progenitor cells. Clonally expanded mSVs disrupt normal cellular function by dysregulating diverse cellular pathways, and enriching for myeloid progenitors. Our findings underscore the contribution of mSVs to the cellular and molecular phenotypes associated with the aging hematopoietic system, and establish a foundation for deciphering the molecular links between mSVs, aging and disease susceptibility in normal tissues.


Assuntos
Células-Tronco Hematopoéticas , Mosaicismo , Humanos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Pessoa de Meia-Idade , Adulto , Análise de Célula Única/métodos , Idoso , Feminino , Masculino , Envelhecimento/genética , Idoso de 80 Anos ou mais , Células-Tronco/metabolismo , Variação Genética
14.
Stem Cell Res Ther ; 14(1): 156, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287056

RESUMO

BACKGROUND: Robust and reliable in vitro and in vivo models of primary cells are necessary to study the pathomechanisms of Myelodysplastic Neoplasms (MDS) and identify novel therapeutic strategies. MDS-derived hematopoietic stem and progenitor cells (HSPCs) are reliant on the support of bone marrow (BM) derived mesenchymal stroma cells (MSCs). Therefore, isolation and expansion of MCSs are essential for successfully modeling this disease. For the clinical use of healthy MSCs isolated from human BM, umbilical cord blood or adipose tissue, several studies showed that xeno-free (XF) culture conditions resulted in superior growth kinetics compared to MSCs cultured in the presence of fetal bovine serum (FBS). In this present study, we investigate, whether the replacement of a commercially available MSC expansion medium containing FBS with a XF medium is beneficial for the expansion of MSCs derived from BM of MDS patients which are often difficult to cultivate. METHODS: MSCs isolated from BM of MDS patients were cultured and expanded in MSC expansion medium with FBS or XF supplement. Subsequently, the impact of culture media on growth kinetics, morphology, immunophenotype, clonogenic potential, differentiation capacity, gene expression profiles and ability to engraft in immunodeficient mouse models was evaluated. RESULTS: Significant higher cell numbers with an increase in clonogenic potential were observed during culture of MDS MSCs with XF medium compared to medium containing FBS. Differential gene expression showed an increase in transcripts associated with MSC stemness after expansion with XF. Furthermore, immunophenotypes of the MSCs and their ability to differentiate into osteoblasts, adipocytes or chondroblasts remained stable. MSCs expanded with XF media were similarly supportive for creating MDS xenografts in vivo as MSCs expanded with FBS. CONCLUSION: Our data indicate that with XF media, higher cell numbers of MDS MSCs can be obtained with overall improved characteristics in in vitro and in vivo experimental models.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Animais , Camundongos , Humanos , Meios de Cultura Livres de Soro , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo , Proliferação de Células , Células Cultivadas
15.
Nat Biotechnol ; 41(6): 832-844, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36424487

RESUMO

Somatic structural variants (SVs) are widespread in cancer, but their impact on disease evolution is understudied due to a lack of methods to directly characterize their functional consequences. We present a computational method, scNOVA, which uses Strand-seq to perform haplotype-aware integration of SV discovery and molecular phenotyping in single cells by using nucleosome occupancy to infer gene expression as a readout. Application to leukemias and cell lines identifies local effects of copy-balanced rearrangements on gene deregulation, and consequences of SVs on aberrant signaling pathways in subclones. We discovered distinct SV subclones with dysregulated Wnt signaling in a chronic lymphocytic leukemia patient. We further uncovered the consequences of subclonal chromothripsis in T cell acute lymphoblastic leukemia, which revealed c-Myb activation, enrichment of a primitive cell state and informed successful targeting of the subclone in cell culture, using a Notch inhibitor. By directly linking SVs to their functional effects, scNOVA enables systematic single-cell multiomic studies of structural variation in heterogeneous cell populations.


Assuntos
Cromotripsia , Leucemia , Neoplasias , Humanos , Neoplasias/genética , Leucemia/genética , Rearranjo Gênico , Linhagem Celular , Variação Estrutural do Genoma
16.
Nat Commun ; 14(1): 1497, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932114

RESUMO

Limited response rates and frequent relapses during standard of care with hypomethylating agents in myelodysplastic neoplasms (MN) require urgent improvement of this treatment indication. Here, by combining 5-azacytidine (5-AZA) with the pan-lysyl oxidase inhibitor PXS-5505, we demonstrate superior restoration of erythroid differentiation in hematopoietic stem and progenitor cells (HSPCs) of MN patients in 20/31 cases (65%) versus 9/31 cases (29%) treated with 5-AZA alone. This effect requires direct contact of HSPCs with bone marrow stroma components and is dependent on integrin signaling. We further confirm these results in vivo using a bone marrow niche-dependent MN xenograft model in female NSG mice, in which we additionally demonstrate an enforced reduction of dominant clones as well as significant attenuation of disease expansion and normalization of spleen sizes. Overall, these results lay out a strong pre-clinical rationale for efficacy of combination treatment of 5-AZA with PXS-5505 especially for anemic MN.


Assuntos
Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Neoplasias , Humanos , Feminino , Camundongos , Animais , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Eritropoese , Proteína-Lisina 6-Oxidase , Células-Tronco Hematopoéticas , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/patologia , Transtornos Mieloproliferativos/patologia , Neoplasias/patologia
17.
Leukemia ; 36(1): 236-247, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34172896

RESUMO

Preclinical research of myelodysplastic syndromes (MDSs) is hampered by a lack of feasible disease models. Previously, we have established a robust patient-derived xenograft (PDX) model for MDS. Here we demonstrate for the first time that this model is applicable as a preclinical platform to address pending clinical questions by interrogating the efficacy and safety of the thrombopoietin receptor agonist eltrombopag. Our preclinical study included n = 49 xenografts generated from n = 9 MDS patient samples. Substance efficacy was evidenced by FACS-based human platelet quantification and clonal bone marrow evolution was reconstructed by serial whole-exome sequencing of the PDX samples. In contrast to clinical trials in humans, this experimental setup allowed vehicle- and replicate-controlled analyses on a patient-individual level deciphering substance-specific effects from natural disease progression. We found that eltrombopag effectively stimulated thrombopoiesis in MDS PDX without adversely affecting the patients' clonal composition. In conclusion, our MDS PDX model is a useful tool for testing new therapeutic concepts in MDS preceding clinical trials.


Assuntos
Benzoatos/uso terapêutico , Hidrazinas/uso terapêutico , Síndromes Mielodisplásicas/tratamento farmacológico , Pirazóis/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/patologia , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Exp Hematol ; 107: 38-50, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34952140

RESUMO

Patient-derived xenograft (PDX) models have emerged as versatile preclinical platforms for investigation of functional pathomechanisms in myelodysplastic syndromes (MDS) and other myeloid neoplasms. However, despite increasingly improved methodology, engraftment efficiencies frequently remain low. Humanized three-dimensional scaffold models (ossicle xenotransplantation models) in immunocompromised mice have recently been found to enable improved engraftment rates of healthy and malignant human hematopoiesis. We therefore interrogated the feasibility of using four different three-dimensional ossicle-based PDX models for application with primary MDS samples. In a fully standardized comparison, we evaluated scaffold materials such as Gelfoam, extracellular matrix (ECM), and human or xenogenous bone substance in comparison to intrafemoral (IF) co-injection of bone marrow (BM)-derived mesenchymal stromal cells (MSCs) and CD34+ hematopoietic stem and progenitor cells (HSPCs). Our study included13 primary MDS patient samples transplanted in parallel according to these five different conditions. Engraftment of MDS samples was assessed by flow cytometry, immunohistological staining, and molecular validation. We determined that three-dimensional ossicle-based methods achieved higher relative rates of engraftment and enabled long-term retrievability of patient-derived MSCs from implanted ossicles. In summary, HSPCs and MSCs derived from MDS BM, which did not significantly engraft in NSG mice after intrafemoral injection, were able to colonize humanized scaffold models. Therefore, these models are promising new xenotransplantation techniques for addressing preclinical and functional questions of the interaction between hematopoiesis and the BM niche in MDS.


Assuntos
Células-Tronco Mesenquimais , Síndromes Mielodisplásicas , Animais , Células da Medula Óssea/patologia , Modelos Animais de Doenças , Hematopoese , Células-Tronco Hematopoéticas/patologia , Humanos , Células-Tronco Mesenquimais/patologia , Camundongos , Síndromes Mielodisplásicas/patologia , Transplante Heterólogo
19.
Nat Commun ; 12(1): 6170, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697318

RESUMO

The bone marrow (BM) stroma in myeloid neoplasms is altered and it is hypothesized that this cell compartment may also harbor clonal somatically acquired mutations. By exome sequencing of in vitro expanded mesenchymal stromal cells (MSCs) from n = 98 patients with myelodysplastic syndrome (MDS) and n = 28 healthy controls we show that these cells accumulate recurrent mutations in genes such as ZFX (n = 8/98), RANK (n = 5/98), and others. MDS derived MSCs display higher mutational burdens, increased replicative stress, senescence, inflammatory gene expression, and distinct mutational signatures as compared to healthy MSCs. However, validation experiments in serial culture passages, chronological BM aspirations and backtracking of high confidence mutations by re-sequencing primary sorted MDS MSCs indicate that the discovered mutations are secondary to in vitro expansion but not present in primary BM. Thus, we here report that there is no evidence for clonal mutations in the BM stroma of MDS patients.


Assuntos
Medula Óssea/patologia , Células-Tronco Mesenquimais/patologia , Síndromes Mielodisplásicas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Medula Óssea/metabolismo , Células Cultivadas , Exoma/genética , Feminino , Genótipo , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Mutação , Síndromes Mielodisplásicas/patologia , Fenótipo , Microambiente Tumoral
20.
Nat Commun ; 12(1): 1366, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649320

RESUMO

Cancer stem cells drive disease progression and relapse in many types of cancer. Despite this, a thorough characterization of these cells remains elusive and with it the ability to eradicate cancer at its source. In acute myeloid leukemia (AML), leukemic stem cells (LSCs) underlie mortality but are difficult to isolate due to their low abundance and high similarity to healthy hematopoietic stem cells (HSCs). Here, we demonstrate that LSCs, HSCs, and pre-leukemic stem cells can be identified and molecularly profiled by combining single-cell transcriptomics with lineage tracing using both nuclear and mitochondrial somatic variants. While mutational status discriminates between healthy and cancerous cells, gene expression distinguishes stem cells and progenitor cell populations. Our approach enables the identification of LSC-specific gene expression programs and the characterization of differentiation blocks induced by leukemic mutations. Taken together, we demonstrate the power of single-cell multi-omic approaches in characterizing cancer stem cells.


Assuntos
Células Clonais/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Análise de Célula Única , Transcriptoma/genética , Biomarcadores Tumorais/genética , Medula Óssea/patologia , Diferenciação Celular , Regulação Leucêmica da Expressão Gênica , Genoma , Células-Tronco Hematopoéticas/patologia , Humanos , Células K562 , Mitocôndrias/genética , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA