Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Glob Chang Biol ; 29(3): 668-685, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36408667

RESUMO

Two major oceanographic changes have recently propagated through several trophic levels in coastal areas of Southeast Greenland (SEG). Firstly, the amount of drift-ice exported from the Fram Strait and transported with the East Greenland Current (EGC) has decreased significantly over the past two decades, and a main tipping element (summer sea ice) has virtually disappeared since 2003 leading to a regime shift in oceanographic and ecological conditions in the region. The following 20-year period with low or no coastal sea ice is unique in the 200-year history of ice observations in the region, and the regime shift is also obvious in the volume of ice export through the Fram Strait after 2013. In the same period, the temperature of the EGC south of 73.5 N has increased significantly (>2°C) since 1980. Secondly, the warm Irminger Current, which advects warm, saline Atlantic Water into the region, has become warmer since 1990. The lack of pack ice in summer together with a warming ocean generated cascading effects on the ecosystem in SEG that are manifested in a changed fish fauna with an influx of boreal species in the south and the subarctic capelin further north. At higher trophic levels there has been an increase in the abundance of several boreal cetaceans (humpback, fin, killer, and pilot whales and dolphins) that are either new to this area or occur in historically large numbers. It is estimated that the new cetacean species in SEG are responsible for an annual predation level of 700,000 tons of fish. In addition, predation on krill species is estimated at >1,500,000 tons mainly consumed by fin whales. Simultaneously, there has been a reduction in the abundance and catches of narwhals and walruses in SEG and it is suggested that these species have been impacted by the habitat changes.


Assuntos
Ecossistema , Baleias , Animais , Groenlândia , Estações do Ano , Temperatura , Peixes , Camada de Gelo
2.
Mol Ecol ; 29(13): 2379-2398, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32497342

RESUMO

Gene flow has tremendous importance for local adaptation, by influencing the fate of de novo mutations, maintaining standing genetic variation and driving adaptive introgression. Furthermore, structural variation as chromosomal rearrangements may facilitate adaptation despite high gene flow. However, our understanding of the evolutionary mechanisms impending or favouring local adaptation in the presence of gene flow is still limited to a restricted number of study systems. In this study, we examined how demographic history, shared ancestral polymorphism, and gene flow among glacial lineages contribute to local adaptation to sea conditions in a marine fish, the capelin (Mallotus villosus). We first assembled a 490-Mbp draft genome of M. villosus to map our RAD sequence reads. Then, we used a large data set of genome-wide single nucleotide polymorphisms (25,904 filtered SNPs) genotyped in 1,310 individuals collected from 31 spawning sites in the northwest Atlantic. We reconstructed the history of divergence among three glacial lineages and showed that they probably diverged from 3.8 to 1.8 million years ago and experienced secondary contacts. Within each lineage, our analyses provided evidence for large Ne and high gene flow among spawning sites. Within the Northwest Atlantic lineage, we detected a polymorphic chromosomal rearrangement leading to the occurrence of three haplogroups. Genotype-environment associations revealed molecular signatures of local adaptation to environmental conditions prevailing at spawning sites. Our study also suggests that both shared polymorphisms among lineages, resulting from standing genetic variation or introgression, and chromosomal rearrangements may contribute to local adaptation in the presence of high gene flow.


Assuntos
Adaptação Fisiológica , Genoma , Osmeriformes/genética , Adaptação Fisiológica/genética , Animais , Oceano Atlântico , Evolução Biológica , Fluxo Gênico , Osmeriformes/fisiologia , Polimorfismo de Nucleotídeo Único
3.
Ecol Appl ; 26(7): 2021-2032, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27755730

RESUMO

Geographic redistribution of living natural resources changes access and thereby harvesting opportunities between countries. Internationally shared fish resources can be sensitive to shifts in the marine environment and this may have great impact on the economies of countries and regions that rely most heavily on fisheries to provide employment and food supply. Here we present a climate change-related biotic expansion of a rich natural resource with substantial economic consequences, namely the appearance of northeast Atlantic mackerel (Scomber scombrus) in Greenlandic waters. In recent years, the summer temperature has reached record highs in the Irminger Current, and this development has expanded the available and realized mackerel habitat in time and space. Observations in the Irminger Current in east Greenland in 2011 of this temperature-sensitive epipelagic fish were the first records so far northwest in the Atlantic. This change in migration pattern was followed by a rapid development of a large-scale fishery of substantial importance for the national economy of Greenland (23% of Greenland's export value of all goods in 2014). A pelagic trawl survey was conducted in mid-summer 2014 and the results showed that the bulk of ~1 million Mg (=t) of mackerel in the Irminger Current in southeast Greenland were located in the relatively warm (>8.5°C) surface layer. Mackerel was also observed in southwest Greenland. Finally, 15 CMIP5 Earth System Model projections of future marine climate were used to evaluate the epipelagic environment in Greenland. These projections for moderate and high CO2 emission scenarios (representative concentration pathways [RCP] 4.5 and 8.5) suggest how the available mackerel habitat may expand further in space and time. Overall, our results indicate that, if the stock remains large, productive, and continues its current migration pattern, then climate change has provided Greenland with a new unique opportunity for commercial exploitation. However, positive cases like this should not be cherry-picked and misused as arguments against timely and effective mitigation of climate change.


Assuntos
Mudança Climática , Ecossistema , Peixes/fisiologia , Oceanos e Mares , Temperatura , Animais , Oceano Atlântico , Monitoramento Ambiental , Pesqueiros/economia , Groenlândia , Crescimento Demográfico
4.
PLoS One ; 13(1): e0190345, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293577

RESUMO

The present study uses bioenergetics modeling to estimate the annual consumption of the main zooplankton groups by some of the most commercially important planktivorous fish stocks in the Northeast Atlantic, namely Norwegian spring-spawning (NSS) herring (Clupea harengus), blue whiting (Micromesistius poutassou) and NEA mackerel (Scomber scombrus). The data was obtained from scientific surveys in the main feeding area (Norwegian Sea) in the period 2005-2010. By incorporating novel information about ambient temperature, seasonal growth and changes in the diet from stomach content analyses, annual consumption of the different zooplankton groups by pelagic fish is estimated. The present study estimates higher consumption estimates than previous studies for the three species and suggests that fish might have a greater impact on the zooplankton community as foragers. This way, NEA mackerel, showing the highest daily consumption rates, and NSS herring, annually consume around 10 times their total biomass, whereas blue whiting consume about 6 times their biomass in zooplankton. The three species were estimated to consume an average of 135 million (M) tonnes of zooplankton each year, consisting of 53-85 M tonnes of copepods, 20-32 M tonnes of krill, 8-42 M tonnes of appendicularians and 0.2-1.2 M tonnes of fish, depending on the year. For NSS herring and NEA mackerel the main prey groups are calanoids and appendicularians, showing a peak in consumption during June and June-July, respectively, and suggesting high potential for inter-specific feeding competition between these species. In contrast, blue whiting maintain a low consumption rate from April to September, consuming mainly larger euphausiids. Our results suggest that the three species can coexist regardless of their high abundance, zooplankton consumption rates and overlapping diet. Accordingly, the species might have niche segregation, as they are species specific, showing annual and inter-annual variability in total consumption of the different prey species. These estimates and their inter-annual and inter-specific variation are fundamental for understanding fundamental pelagic predator-prey interactions as well as to inform advanced multispecies ecosystem models.


Assuntos
Metabolismo Energético , Comportamento Alimentar , Peixes/fisiologia , Modelos Biológicos , Zooplâncton , Animais , Oceano Atlântico
5.
PLoS One ; 8(5): e64744, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741381

RESUMO

Atlantic mackerel (Scomber scombrus) occurs on both sides of the north Atlantic and has traditionally been grouped into 5 spawning components, some of which were thought to be isolated natal homing stocks. Previous studies have provided no evidence for cross Atlantic migration and no or weak support for isolated spawning components within either side of the North Atlantic. We question the de-facto accepted hypothesis of isolation between spawning components on the basis of spawning and age distribution data. The spawning intensities, proxied by larval abundances, are negatively correlated between the North Sea and Celtic Sea, which indicates that the two spawning components may be connected by straying individuals. This finding is based on unique larvae samples collected before the collapse of North Sea component, thus showing that the exchange is not a recent phenomenon due to the collapse. The analyses of old as well as more recent age distributions show that strong year classes spread into other areas where they spawn as adults ("twinning"). Our findings are in accordance with the lack of solid evidence for stock separation from previous analyses of tagging data, genetics, ectoparasite infections, otolith shapes, and blood phenotypes. Because no method has been able to identify the origin of spawning mackerel unequivocally from any of the traditional spawning components, and in the light of our results, we conclude that straying outweighs spatial segregation. We propose a new model where the population structure of mackerel is described as a dynamic cline, rather than as connected contingents. Temporal changes in hydrography and mackerel behavior may affect the steepness of the cline at various locations. The new interpretation of the population structure of Atlantic mackerel has important implications for research, assessment and management.


Assuntos
Migração Animal/fisiologia , Larva/fisiologia , Modelos Estatísticos , Perciformes/fisiologia , Reprodução/fisiologia , Fatores Etários , Animais , Oceano Atlântico , Europa (Continente) , Feminino , Masculino , Dinâmica Populacional , Isolamento Reprodutivo
6.
PLoS One ; 8(2): e58114, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23469149

RESUMO

A comparison of growth data (fish length) with latitude shows that southern juvenile mackerel attain a greater length than those originating from further north before growth ceases during their first winter. A similar significant relationship was found between the growth in the first year (derived from the otolith inner winter ring) and latitude for adult mackerel spawning between 44°N (Bay of Biscay) and 54°N (west of Ireland). These observations are consistent with spatial segregation of the spawning migration; the further north that the fish were hatched, the further north they will tend to spawn. No such relationship was found in mackerel spawning at more northerly latitudes, possibly as a consequence of increased spatial mixing in a more energetic regime with stronger currents. This study provides previously lacking support for spawning segregation behaviour among North East Atlantic mackerel--an important step towards understanding the migratory behaviour of mackerel and hence the spatiotemporal distribution dynamics around spawning time.


Assuntos
Migração Animal , Perciformes/crescimento & desenvolvimento , Perciformes/fisiologia , Comportamento Espacial , Animais , Oceano Atlântico , Tamanho Corporal
7.
PLoS One ; 7(12): e51541, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251570

RESUMO

It has been suggested that observed spatial variation in mackerel fisheries, extending over several hundreds of kilometers, is reflective of climate-driven changes in mackerel migration patterns. Previous studies have been unable to clearly demonstrate this link. In this paper we demonstrate correlation between temperature and mackerel migration/distribution as proxied by mackerel catch data from both scientific bottom trawl surveys and commercial fisheries. We show that mackerel aggregate and migrate distances of up to 500 km along the continental shelf edge from mid-November to early March. The path of this migration coincides with the location of the relatively warm shelf edge current and, as a consequence of this affinity, mackerel are guided towards the main spawning area in the south. Using a simulated time series of temperature of the shelf edge current we show that variations in the timing of the migration are significantly correlated to temperature fluctuations within the current. The proposed proxies for mackerel distribution were found to be significantly correlated. However, the correlations were weak and only significant during periods without substantial legislative or technical developments. Substantial caution should therefore be exercised when using such data as proxies for mackerel distribution. Our results include a new temperature record for the shelf edge current obtained by embedding the available hydrographic observations within a statistical model needed to understand the migration through large parts of the life of adult mackerel and for the management of this major international fishery.


Assuntos
Migração Animal/fisiologia , Pesqueiros , Perciformes/fisiologia , Estações do Ano , Animais , Oceano Atlântico , Coleta de Dados , Dinâmica Populacional , Temperatura , Fatores de Tempo
8.
PLoS One ; 7(6): e38758, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737221

RESUMO

We present a unique view of mackerel (Scomber scombrus) in the North Sea based on a new time series of larvae caught by the Continuous Plankton Recorder (CPR) survey from 1948-2005, covering the period both before and after the collapse of the North Sea stock. Hydrographic backtrack modelling suggested that the effect of advection is very limited between spawning and larvae capture in the CPR survey. Using a statistical technique not previously applied to CPR data, we then generated a larval index that accounts for both catchability as well as spatial and temporal autocorrelation. The resulting time series documents the significant decrease of spawning from before 1970 to recent depleted levels. Spatial distributions of the larvae, and thus the spawning area, showed a shift from early to recent decades, suggesting that the central North Sea is no longer as important as the areas further west and south. These results provide a consistent and unique perspective on the dynamics of mackerel in this region and can potentially resolve many of the unresolved questions about this stock.


Assuntos
Monitoramento Ambiental/métodos , Perciformes/fisiologia , Algoritmos , Animais , Simulação por Computador , Interpretação Estatística de Dados , Geografia , Modelos Estatísticos , Distribuição Normal , Mar do Norte , Plâncton/metabolismo , Dinâmica Populacional , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA