Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(3): 787-799, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37847408

RESUMO

Lipid oxidation in food products is a crucial problem that causes undesirable changes in the food's flavor, texture, and nutritional value. It should be carefully monitored as it can lead to the formation of potentially toxic compounds and in that way reduce the shelf life of the product. Liquid chromatography coupled to mass spectrometry is a powerful tool to monitor the formation of oxidized lipids. However, the presence of lipid species in both their non-oxidized and oxidized forms at distinctly different concentrations can hinder the detection and identification of the less abundant oxidized species, due to coelution. In this study, a flow injection mass spectrometry approach was used to selectively ionize oxidized triacylglycerols versus their non-oxidized precursors. Three mobile phase additives were investigated (ammonium formate, sodium acetate, and sodium iodide) at three different concentrations, and ion source settings (i.e., sheath gas temperature, capillary voltage, and nozzle voltage) were optimized. A fractional factorial design was conducted to examine not only the direct effect of the operating parameters on the selectivity of ionization for the oxidized lipid species, but also to assess their combined effect. Overall, selective ionization of oxidized versus non-oxidized lipid species was favored by the use of sodium-containing solvent additives. The application of specific ion source settings resulted in an increased ionization selectivity, with sheath gas temperature and capillary voltage having the most significant influence. A selectivity factor as high as 120 could be reached by combining 0.1 mg/mL sodium-containing additives, with 250 °C sheath gas temperature and 5000 V capillary voltage. These findings will contribute to future studies on fast detection and relative quantification of low abundant oxidized triacylglycerols and their possible impact on human health.


Assuntos
Lipídeos , Sódio , Humanos , Solventes , Espectrometria de Massas , Triglicerídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos
2.
Anal Chem ; 95(2): 1395-1401, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36547121

RESUMO

Despite mass spectrometry (MS) being proven powerful for the characterization of synthetic polymers, its potential for the analysis of single particle microplastics (MPs) is yet to be fully disclosed. To date, MPs are regarded as ubiquitous contaminants, but the limited availability of techniques that enable full characterizations of MPs results in a lack of systematic data regarding their occurrence. In this study, an atmospheric solid analysis probe (ASAP) coupled to a compact quadrupole MS is proposed for the chemical analysis of single particle microplastics, while maintaining full compatibility with complementary staining and image analysis approaches. A two-stage ASAP probe temperature program was optimized for the removal of additives and surface contaminants followed by the actual polymer characterization. The method showed specific mass spectra for a wide range of single particle MPs, including polyolefins, polyaromatics, polyacrylates, (bio)polyesters, polyamides, polycarbonates, and polyacrylonitriles. The single particle size detection limits for polystyrene MPs were found to be 30 and 5 µm in full scan and selected ion recording mode, respectively. Moreover, results are presented of a multimodal microplastic analysis approach in which filtered particles are first characterized by staining and fluorescence microscopy, followed by simple probe picking of individual particles for subsequent analysis by ASAP-MS. The method provides a full characterization of MP contamination, including particle number, particle size, particle shape, and chemical identity. The applicability of the developed multimodal method was successfully demonstrated by the analysis of MPs in bioplastic bottled water.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Plásticos/química , Cromatografia Gasosa-Espectrometria de Massas , Poluentes Químicos da Água/análise , Espectrometria de Massas , Monitoramento Ambiental
3.
Anal Bioanal Chem ; 415(14): 2715-2726, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37000211

RESUMO

Peptides are an important group of compounds contributing to the desired, as well as the undesired taste of a food product. Their taste impressions can include aspects of sweetness, bitterness, savoury, umami and many other impressions depending on the amino acids present as well as their sequence. Identification of short peptides in foods is challenging. We developed a method to assign identities to short peptides including homologous structures, i.e. peptides containing the same amino acids with a different sequence order, by accurate prediction of the retention times during reversed phase separation. To train the method, a large set of well-defined short peptides with systematic variations in the amino acid sequence was prepared by a novel synthesis strategy called 'swapped-sequence synthesis'. Additionally, several proteins were enzymatically digested to yield short peptides. Experimental retention times were determined after reversed phase separation and peptide MS2 data was acquired using a high-resolution mass spectrometer operated in data-dependent acquisition mode (DDA). A support vector regression model was trained using a combination of existing sequence-independent peptide descriptors and a newly derived set of selected amino acid index derived sequence-specific peptide (ASP) descriptors. The model was trained and validated using the experimental retention times of the 713 small food-relevant peptides prepared. Whilst selecting the most useful ASP descriptors for our model, special attention was given to predict the retention time differences between homologous peptide structures. Inclusion of ASP descriptors greatly improved the ability to accurately predict retention times, including retention time differences between 157 homologous peptide pairs. The final prediction model had a goodness-of-fit (Q2) of 0.94; moreover for 93% of the short peptides, the elution order was correctly predicted.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Peptídeos/química , Sequência de Aminoácidos , Aminoácidos/química , Cromatografia Líquida de Alta Pressão
4.
Anal Bioanal Chem ; 410(2): 471-482, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29167932

RESUMO

Flavonoids are a class of natural compounds with a broad range of potentially beneficial health properties. They are subjected to an extensive intestinal phase-II metabolism, i.e., conjugation to glucuronic acid, sulfate, and methyl groups. Flavonoids and their metabolites can interact with drug transporters and thus interfere with drug absorption, causing food-drug interactions. The site of metabolism plays a key role in the activity, but the identification of the various metabolites remains a challenge. Here, we developed an analytical method to identify the phase-II metabolites of structurally similar flavonoids. We used liquid chromatography-ion-mobility spectrometry-mass spectrometry (LC-IMS-MS) analysis to identify phase-II metabolites of flavonols, flavones, and catechins produced by HT29 cells. We showed that IMS could bring valuable structural information on the different positional isomers of the flavonols and flavones. The position of the glucuronide moiety had a strong influence on the collision cross section (CCS) of the metabolites, with only minor contribution of hydroxyl and methyl moieties. For the catechins, fragmentation data obtained from MS/MS analysis appeared more useful than IMS to determine the structure of the metabolites, mostly due to the high number of metabolites formed. Nevertheless, CCS information as a molecular fingerprint proved to be useful to identify peaks from complex mixtures. LC-IMS-MS thus appears as a valuable tool for the identification of phase-II metabolites of flavonoids. Graphical abstract Structural identification of phase-II metabolites of flavonoids using LC-IMS-MS.


Assuntos
Flavonoides/metabolismo , Glucuronídeos/metabolismo , Cromatografia Líquida/métodos , Flavonoides/análise , Glucuronídeos/análise , Células HT29 , Humanos , Isomerismo , Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos
5.
Anal Bioanal Chem ; 410(22): 5421-5429, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29744561

RESUMO

Lipid oxidation reactions in foods rich in healthy unsaturated fatty acids result in the formation of a wide range of oxidation products that can have adverse effects on food quality and safety. To improve the understanding of oxidation reactions and methods for their inhibition, detailed information on the type and levels of the oxidation products formed is required. Accurate measurement of lipid oxidation products, especially of the non-volatile aldehyde products, has so far been a challenge due to the low sensitivity and limited specificity of most analytical methods. Here, a novel normal-phase LC method that uses selective labeling of aldehydes and epoxides with 7-(diethylamino)coumarin-3-carbohydrazide (CHH) is described. Labeling of alkanals is quantitative within 10 h. For alkenals, conversion is only around 50% at 24 h reaction time. Detailed MS identification of all aldehydes and epoxides is possible by using high-resolution MS and data-dependent MS2 acquisition. Fluorescence detection was successfully used to quantify groups of oxidation products. Sensitivity was high enough to allow accurate quantification even in fresh mayonnaises, where levels of around only 0.3 g total aldehydes/kg oil were found. Individual species can be quantified by MS if suitable reference standards are available. If no standards can be used, semi-quantification using an average response factor is an option. Clearly, the novel derivatization method is suitable for monitoring secondary lipid oxidation products in the early stages of shelf life. This makes it an important tool for developing improved food products. Graphical abstract Selective labeling of low and high molecular weight lipid oxidation products with 7-(diethylamino) coumarin-3-carbohydrazide for identification and semi-quantification.


Assuntos
Aldeídos/análise , Cumarínicos/química , Análise de Alimentos/métodos , Hidrazinas/química , Lipídeos/química , Aldeídos/química , Aldeídos/normas , Cromatografia Líquida/métodos , Inocuidade dos Alimentos , Oxirredução , Padrões de Referência , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray
6.
J Sep Sci ; 40(18): 3612-3620, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28771945

RESUMO

The linear solvent strength model was used to predict coverage in online comprehensive two-dimensional reversed-phase liquid chromatography. The prediction model uses a parallelogram to describe the separation space covered with peaks in a system with limited orthogonality. The corners of the parallelogram are assumed to behave like chromatographic peaks and the position of these pseudo-compounds was predicted. A mix of 25 polycyclic aromatic compounds were used as a test. The precision of the prediction, span 0-25, was tested by varying input parameters, and was found to be acceptable with root mean square errors of 3. The accuracy of the prediction was assessed by comparing with the experimental coverages. Less than half of experimental coverages were outside prediction ± 1 × root mean square error and none outside prediction ± 2 × root mean square error. Accuracy was lower when retention factors were low, or when gradient conditions affected parameters not included in the model, e.g. second dimension gradient time affects the second dimension equilibration time. The concept shows promise as a tool for gradient optimization in online comprehensive two-dimensional liquid chromatography, as it mitigates the tedious registration and modeling of all sample constituents, a circumstance that is particularly appealing when dealing with complex samples.

7.
Anal Bioanal Chem ; 408(9): 2357-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26825344

RESUMO

A sensitive and specific gas chromatography-mass spectrometry (GC-MS) method was developed and validated for the measurement of the squalene content from root to tip, in both Chinese black virgin and bleached hair. Deuterated squalene was used as the internal standard. For quantification, selective ion monitoring (SIM) at m/z 410.0 and 347.0 were monitored for squalene and deuterated squalene, respectively. Different methods for the extraction of squalene from ex vivo human hair were compared including organic solvent extraction and acid/alkali hydrolysis. The best extraction efficiency was obtained by using a mixed solvent consisting of chloroform:methanol = 2:1 (v:v). The linear range of squalene ran from 1.0 to 50.0 µg mL(-1). The limit of detection (LOD) was 0.10 µg mL(-1) (corresponding to 0.005 mg g(-1) in human hair), which enabled quantification of squalene in human hair at very low level. The recovery of squalene was 96.4 ± 1.46% (n = 3). Using the above-mentioned mixed solvent extraction, squalene content in human hair was successfully quantified from root to tip. Meanwhile, a Raman imaging method was developed to visualize the squalene distribution in Chinese white virgin hair from cuticle to medulla.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Cabelo/química , Análise Espectral Raman/métodos , Esqualeno/análise , Humanos , Limite de Detecção
8.
Anal Bioanal Chem ; 406(2): 459-65, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24264619

RESUMO

Measuring polymer solubility accurately and precisely is challenging. This is especially true at unfavourable solvent compositions, when only very small amounts of polymer dissolve. In this paper, pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) is demonstrated to be much more informative and sensitive than conventional methods, such as ultraviolet spectroscopy. By using a programmed-temperature-vapourisation injector as the pyrolysis chamber, we demonstrate that Py-GC-MS can cover up to five orders of magnitude in dissolved polymer concentrations. For polystyrene, a detection limit of 1 ng mL(-1) is attained. Dissolution in poor solvents is demonstrated to be discriminating in terms of the analyte molecular weight. Py-GC-MS additionally can yield information on polymer composition (e.g. in case of copolymers). In combination with size-exclusion chromatography, Py-GC-MS allows us to estimate the molecular weight distributions of minute amounts of a dissolved polymer and variations therein as a function of time.

9.
Food Chem ; 440: 138187, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134831

RESUMO

Δ8-Tetrahydrocannabinol (Δ8-THC) is increasingly popular as a controversial substitute for Δ9-tetrahydrocannabinol (Δ9-THC) in cannabinoid-infused edibles. Δ8-THC is prepared from cannabidiol (CBD) by treatment with acids. Side products including Δ9-THC and other isomers that might end up in Δ8-THC edibles are less studied. In this paper, three orthogonal methods, namely reversed-phase (RP)-UHPLC-DAD/HRMS, normal-phase/argentation (silica-Ag(I))-HPLC-DAD/MS, and GC-FID/MS were developed for analysis of cannabinoid isomers, namely Δ8-THC, Δ9-THC, CBD, Δ8-iso-THC, Δ(4)8-iso-THC, and hydrated THC isomers. Eight acid-treated CBD mixtures contained various amounts of Δ8-THC (0-89%, w/w%), high levels of Δ9-THC (up to 49%), Δ8-isoTHC (up to 55%), Δ(4)8-iso-THC (up to 17%), and three hydrated THC isomers. Commercial Δ8-THC gummies were also analyzed, and issues like overclaimed Δ8-THC, excessive Δ9-THC, undeclared Δ8-iso-THC, and Δ(4)8-iso-THC were found. These findings highlight the urgency of improving regulations towards converting CBD to Δ8-THC for use as food ingredients.


Assuntos
Canabidiol , Canabinoides , Cannabis , Canabinoides/análise , Dronabinol/análise , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massa com Cromatografia Líquida
10.
Sci Rep ; 14(1): 13904, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886469

RESUMO

Prussian Blue Analogues (PBAs), which are characterized by their open structure, high stability, and non-toxic properties, have recently been the subject of research for various applications, including their use as electrode precursors for capacitive deionization, gas storage, and environmental purification. These materials can be readily tailored to enhance their affinity towards gases for integration with sensing devices. An improved understanding of PBA-gas interactions is expected to enhance material development and existing sensor deposition schemes greatly. The use of inverse gas chromatography (IGC) is a robust approach for examining the relationship between porous materials and gases. In this study, the adsorption properties of (functionalized) hydrocarbons, i.e., probe molecules, on the copper hexacyanoferrate (CuHCF) lattice were studied via IGC, demonstrating that alkylbenzenes have a higher affinity for this material than n-alkanes. This difference was rationalized by steric hindrance, π-π interactions, and vapour pressure effects. Along the same line, the five isomers of hexane showed decreasing selectivity upon increased steric hindrance. Enthalpy values for n-pentane, n-hexane and n-heptane were lower than that of toluene. The introduction of increased probe masses resulted in a surface coverage of 46% for toluene. For all n-alkane probe molecules this percentage was lower. However, the isotherms of these probes did not show saturation points and the observed linear regime proves beneficial for gas sensing. Our work demonstrates the versatility of CuHCF for gas sensing purposes and the potential of IGC to characterize the adsorption characteristics of such a porous nanomaterial.

11.
J Agric Food Chem ; 71(50): 20274-20284, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38059380

RESUMO

Food protein-flavor binding influences flavor release and perception. The complexity of the binding phenomenon lies in the flavor and protein properties. Thus, molecular interactions between commercial whey- or plant-based protein isolates (PI) such as pea, soy, and lupin, with carbonyl and alcohol flavor compounds were assessed by static headspace (HS) GC-MS. HS results showed that not only the displacement of the carbonyl group from the inner part of the flavor structure toward the edge promoted binding up to 52.76% ± 4.65 but also the flavor's degree of unsaturation. Similarly, thermal treatment led to a slight increase in hexanal-protein binding because of possible protein conformational changes. Protein's residual fat (<1%) seemed insufficient to promote significant flavor binding to PI. Despite the complexity of commercial food protein isolates, the results displayed that binding is predominantly influenced by the flavor structure and physicochemical properties, with the protein source and residual fat playing a secondary role.


Assuntos
Etanol , Aromatizantes , Cromatografia Gasosa-Espectrometria de Massas , Proteínas do Soro do Leite , Aromatizantes/química , Proteínas de Plantas , Paladar
12.
Anal Bioanal Chem ; 402(6): 2023-32, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21972006

RESUMO

Phytosterol oxidation products (POPs) have been suggested to exert adverse biological effects similar to, although less severe than, their cholesterol counterparts. For that reason, their analysis in human plasma is highly relevant. Comprehensive two-dimensional gas chromatography (GC×GC) coupled with time-of-flight mass spectrometry (TOF-MS) has been proven to be an extremely powerful separation technique for the analysis of very low levels of target compounds in complex mixtures including human plasma. Thus, a GC×GC/TOF-MS method was developed and successfully validated for the simultaneous quantification of ten POPs in human plasma. The calibration curves for each compound showed correlation coefficients (R(2)) better than 0.99. The detection limits were below 0.1 ng mL(-1). The recovery data were between 71.0% and 98.6% (RSDs <10% for all compounds validated). Good results were obtained for within- and between-day repeatability, with most values being below 10%. In addition, non-targeted sterol metabolites were also identified with the method. The concentrations of POPs found in human plasma in the current study are between 0.3 and 4.5 ng mL(-1), i.e., 10-100 times lower than the typical values found for cholesterol oxidation products.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Fitosteróis/sangue , Humanos , Limite de Detecção , Modelos Lineares , Oxirredução , Fitosteróis/química
13.
J Sep Sci ; 35(14): 1697-711, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22807354

RESUMO

On-line comprehensive two-dimensional liquid chromatography techniques promise to resolve samples that current one-dimensional liquid chromatography methods cannot adequately deal with. To make full use of the potential of two-dimensional liquid chromatography, optimization is required. Optimization of two-dimensional liquid chromatography is a relatively new yet important research topic the aim of which is to predict combinations of stationary and mobile phases, column formats, and chromatographic conditions that maximize resolving power and minimize analysis time. In on-line two-dimensional liquid chromatography, dilution-related issues play also an important role and these should be taken into account when developing optimization strategies. In this work, state-of-the-art strategies that support method development for on-line two-dimensional liquid chromatography through a rigorous choice of chromatographic parameters are critically reviewed. The final aim is to provide practitioners with a clear understanding of which aspects can be optimized using current on-line two-dimensional liquid chromatography strategies (and which ones cannot). In two-dimensional liquid chromatography, maximizing resolving power for a given analysis time and dilution requires optimizing efficiency, selectivity and retention. While great strides forward have been made in the optimization of efficiency-related issues, considerable effort needs still to be made in terms of (1) developing models that can predict the retention factors that given stationary/mobile phase systems can provide and (2) using this information for choosing the two ones that maximize two-dimensional liquid chromatography orthogonality. Because of this limitation, in two-dimensional liquid chromatography, this aspect is typically dealt with a posteriori through examining chromatograms. This review clearly shows that important progress in the optimization of on-line two-dimensional liquid chromatography has recently been made.

14.
Carbohydr Polym ; 291: 119540, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35698370

RESUMO

Although polysaccharides are frequently used in foods, detailed characterization and/or identification of their structures using a single method remains a challenge. We investigated the suitability of periodate oxidation as an approach to depolymerize polysaccharides, allowing characterization and/or identification of the original polysaccharides based on ESI-MS analyses of the released oligosaccharides. Various periodate oxidation conditions were tested on (arabino)xylan, galactomannan, xyloglucan and homogalacturonan. Each polysaccharide required a different oxidation condition to release a substantial level of oligosaccharides. These oligosaccharides had highly complex structures due to the presence of e.g., dialdehyde sugars, hemialdals, and remnants of (oxidized) sugars, as verified by ESI-MS/MS. Despite these oligosaccharides were highly complex and lost some polysaccharide structural features, each periodate-oxidized sample comprised polysaccharide structure-dependent MS oxidized oligosaccharide profiles. Our findings are a good starting point to find a more generic chemical polysaccharide depolymerization approach based on periodate oxidation to identify polysaccharides by oligosaccharides fingerprinting using MS.


Assuntos
Oligossacarídeos , Espectrometria de Massas em Tandem , Oligossacarídeos/química , Ácido Periódico/química , Polissacarídeos
15.
Carbohydr Polym ; 292: 119685, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725177

RESUMO

An autoclave treatment at 121 °C on periodate-oxidized plant polysaccharides and mixes thereof was investigated for the release of oligosaccharides to obtain a generic polysaccharide depolymerization method for polysaccharides fingerprinting. Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) analysis of the oligosaccharides released showed that each polysaccharide had a unique oligosaccharides profile, even the same type of polysaccharide derived from different sources and/or having different fine structures (e.g. class of (arabino)xylans, galactomannans, glucans, or pectic materials). Various polysaccharide classes present in a polysaccharide mix could be identified based on significantly different (p < 0.05) marker m/z values present in the mass spectrum. Principal component analysis and hierarchical cluster analysis of the obtained MALDI-TOF MS data highlighted the structural heterogeneity of the polysaccharides studied, and clustered polysaccharide samples with resembling oligosaccharide profiles. Our approach represents a step further towards a generic and accessible identification of plant polysaccharides individually or in a mixture.


Assuntos
Oligossacarídeos , Polissacarídeos , Hidrólise , Oligossacarídeos/química , Ácido Periódico , Polissacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
16.
Carbohydr Polym ; 276: 118795, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823802

RESUMO

Arabinoxylans (AXs) display biological activities that depend on their chemical structures. To structurally characterize and distinguish AXs using a non-enzymatic approach, various TEMPO-oxidized AXs were partially acid-hydrolysed to obtain diagnostic oligosaccharides (OS). Arabinurono-xylo-oligomer alditols (AUXOS-A) with degree of polymerization 2-5, comprising one and two arabinuronic acid (AraA) substituents were identified in the UHPLC-PGC-MS profiles of three TEMPO-oxidized AXs, namely wheat (ox-WAX), partially-debranched WAX (ox-pD-WAX), and rye (ox-RAX). Characterization of these AUXOS-A highlighted that single-substitution of the Xyl unit preferably occurs at position O-3 for these samples, and that ox-WAX has both more single substituted and more double-substituted xylose residues in its backbone than the other AXs. Characteristic UHPLC-PGC-MS OS profiles, differing in OS abundance and composition, were obtained for each AX. Thus, partial acid-hydrolysis of TEMPO-oxidized AXs with analysis of the released OS by UHPLC-PGC-MS is a promising novel non-enzymatic approach to distinguish AXs and obtain insights into their structures.

17.
J AOAC Int ; 104(2): 260-266, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020454

RESUMO

BACKGROUND: For health reasons it is preferred to prepare food products with edible fats and oils that are high in unsaturated fatty acids. Unfortunately, these unsaturated acids are susceptible to lipid oxidation and the addition of natural antioxidants, e.g., rosemary extracts, etc. is needed. OBJECTIVE: To assess the efficacy of natural oxidation inhibition strategies, fast, yet realistic, and objective methods are needed to study oxidation inhibition. METHODS: A model system consisting of salt and sunflower oil is proposed as a model for dry soups and sauces. Hexanal formation is studied using fast GC-MS as a quantitative indicator for lipid oxidation. RESULTS: A fast GC-MS method using a short, 6-m 150 µm inner-diameter column was developed that allowed elution of hexanal within approximately 20 s, with a total run time of 2 min. The GC method has quantification limits below 1 ppm and is hence much more sensitive than the human nose. CONCLUSIONS: The new accelerated method with hexanal read-out was successfully applied in a study to identify spices and herbs mixtures that can act as natural inhibitors of lipid oxidation. The fast GC-MS method is extremely stable and allowed the analysis of thousands of samples with very little maintenance. HIGHLIGHTS: With the right mixture of spices and herbs, lipid oxidation can be delayed more than 100 times as compared to non-stabilized systems.


Assuntos
Antioxidantes , Óleos de Plantas , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Oxirredução , Especiarias/análise
18.
J Chromatogr A ; 1644: 462106, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33823384

RESUMO

Lipid oxidation is one of the major causes of food spoilage for lipid-rich foods. In particular, oil-in-water emulsions, like mayonnaises and spreads, are prone to oxidation due to the increased interfacial area that facilitates contact between the lipids and hydrophilic pro-oxidants present in the water phase. Polar, amphiphilic lipid species present at the oil/water interface, like the mono- (MAGs) and di-acylglycerols (DAGs), act as oxidation starters that initiate subsequent oxidation reactions of the non-polar lipids in the oil droplets. A comprehensive two-dimensional liquid chromatography (LC×LC) method with evaporative light-scattering detection (ELSD) was set up to study the composition of the complex mixture of oxidized polar and non-polar lipids. The LC×LC-ELSD method employs size exclusion chromatography (SEC) in the 1D (1st dimension) to separate the various lipid species according to size. In the 2D (2nd dimension), normal-phase liquid chromatography (NPLC) is used to separate the fractions according to their degree of oxidation. The coupling of SEC with NPLC yields a good separation of the oxidized triacylglycerols (TAGs) from the large excess of non-oxidized TAGs. In addition, it allows the isolation of non-oxidized DAGs and MAGs that usually interfere with the detection of a variety of oxidized products that have similar polarities. This method facilitates elucidating how lipid composition affects oxidation kinetics in emulsified foods and will aid in the development of more oxidation-stable products.


Assuntos
Cromatografia Líquida/métodos , Lipídeos/química , Lipídeos/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Oxirredução , Triglicerídeos/química
19.
Carbohydr Polym ; 259: 117781, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33674018

RESUMO

TEMPO-oxidation of neutral polysaccharides has been used to obtain polyuronides displaying improved functional properties. Although arabinoxylans (AX) from different sources may yield polyuronides with diverse properties due to their variable arabinose (Araf) substitution patterns, information of the TEMPO-oxidation of AX on its structure remains scarce. We oxidized AX using various TEMPO:NaClO2:NaOCl ratios. A TEMPO:NaClO2:NaOCl ratio of 1.0:2.6:0.4 per mol of Ara gave an oxidized-AX with high molecular weight, minimal effect on xylose appearance, and comprising charged side chains. Although NMR analyses unveiled arabinuronic acid (AraAf) as the only oxidation product in the oxidized-AX, accurate AraA quantification is still challenging. Linkage analysis showed that > 75 % of the ß-(1→4)-xylan backbone remained single-substituted at position O-3 of Xyl similarly to native AX. TEMPO-oxidation of AX can be considered a promising approach to obtain arabinuronoxylans with a substitution pattern resembling its parental AX.

20.
J Sep Sci ; 33(22): 3604-11, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20972972

RESUMO

Sulfonated lignins, used as dispersants in agrochemical formulations, have been characterized by hyphenation of ion-pair RPLC and thermally assisted hydrolysis and methylation-GC-MC (THM-GC-MS). The chemical structure of a series of selected lignins was evaluated, both in terms of overall composition and in terms of composition as a function of molecular size. Some sulfonated lignins give rise to unstable formulations. In the compositional analysis, these samples were found to yield additional fragments. A newly developed comprehensive method made it possible to monitor the occurrence of these fragments as a function of molecular size. In addition to differences in the molecular size between "good" and "bad" batches, clear differences in chemical composition were established.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Lignina/química , Ácidos Sulfônicos/química , Cromatografia Líquida , Hidrólise , Metilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA