RESUMO
Changes in land use can modify habitat and roosting behaviour of bats, and therefore the transmission dynamics of viruses. Within bat roosts the density and contact rate among individuals increase and may facilitate the transmission of bat coronaviruses (CoVs). Landscape components supporting larger bat populations may thus lead to higher CoVs prevalence, as the number of roosts and/or roost size are likely to be higher. Hence, relationships between landscape composition and the presence of CoVs are expected to exist. To increase our understanding of the spread and shedding of coronaviruses in bat populations we studied the relationships between landscape composition and CoVs prevalence in the species Pipistrellus pipistrellus and Pipistrellus nathusii. Faecal samples were collected across The Netherlands, and were screened to detect the presence of CoV RNA. Coordinates were recorded for all faecal samples, so that landscape attributes could be quantified. Using a backward selection procedure on the basis of AIC, the landscape variables that best explained the presence of CoVs were selected in the final model. Results suggested that relationships between landscape composition and CoVs were likely associated with optimal foraging opportunities in both species, e.g. nearby water in P. nathusii or in areas with more grassland situated far away from forests for P. pipistrellus. Surprisingly, we found no positive association between built-up cover (where roosts are frequently found) and the presence of bat-CoVs for both species. We also show that samples collected from large bat roosts, such as maternity colonies, substantially increased the probability of finding CoVs in P. pipistrellus. Interestingly, while maternity colonies of P. nathusii are rarely present in The Netherlands, CoVs prevalence was similar in both species, suggesting that other mechanisms besides roost size, participate in the transmission of bat-CoVs. We encourage further studies to quantify bat roosts and colony networks over the different landscape compositions to better understand the ecological mechanisms involved in the transmission of bat-CoVs.
Assuntos
Quirópteros , Infecções por Coronavirus , Coronavirus , Humanos , Gravidez , Animais , Feminino , Coronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Ecossistema , FlorestasRESUMO
OBJECTIVE: To describe results of analysis of free-catch urine samples collected from Antillean manatees (Trichechus manatus manatus) under human care in the Caribbean. ANIMALS: 32 Antillean manatees in 5 Caribbean oceanaria and rescue centers. PROCEDURES: Urine samples were obtained by opportunistic free catch during physical examination or through the use of operant conditioning procedures. Urinalyses consisted of macro- and microscopic evaluations, biochemical analyses with test strips, and refractometry. Results were compared for manatees grouped on the basis of age, sex, and habitat. RESULTS: Urine samples were typically clear, straw colored, and alkaline (mean pH, 8.0); had a urinoid odor and low specific gravity (mean, 1.010); and had results on qualitative test strips that were consistently negative for the presence of glucose, bilirubin, ketones, proteins, nitrites, RBCs, and WBCs. Microscopically, the mean ± SD number of RBCs and WBCs/hpf was 0.5 ± 0.3 RBCs/hpf and 1.1 ± 1.5 WBCs/hpf. The presence of some epithelial cells and crystals was typical. Spermatozoa were found in urine from 1 of 15 sexually mature males, and parasite larvae and eggs were found in urine from 2 manatees. CONCLUSIONS AND CLINICAL RELEVANCE: Results of the present study yielded the first compilation of baseline urinalysis values in healthy Antillean manatees under human care, which, when combined with physical examination and other diagnostic procedures, can help in monitoring the health of these animals. We encourage the use of free-catch urine collection methods, as used in the present study, for routine urinalyses of manatees under human care in zoos, aquaria, or rescue centers.