Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
EMBO Rep ; 22(7): e50193, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33960111

RESUMO

Epithelial-to-mesenchymal transition (EMT) describes the loss of epithelial traits and gain of mesenchymal traits by normal cells during development and by neoplastic cells during cancer metastasis. The long noncoding RNA HOTAIR triggers EMT, in part by serving as a scaffold for PRC2 and thus promoting repressive histone H3K27 methylation. In addition to PRC2, HOTAIR interacts with the LSD1 lysine demethylase, an epigenetic regulator of cell fate during development and differentiation, but little is known about the role of LSD1 in HOTAIR function during EMT. Here, we show that HOTAIR requires its LSD1-interacting domain, but not its PRC2-interacting domain, to promote the migration of epithelial cells. This activity is suppressed by LSD1 overexpression. LSD1-HOTAIR interactions induce partial reprogramming of the epithelial transcriptome altering LSD1 distribution at promoter and enhancer regions. Thus, we uncover an unexpected role of HOTAIR in EMT as an LSD1 decommissioning factor, counteracting its activity in the control of epithelial identity.


Assuntos
RNA Longo não Codificante , Linhagem Celular Tumoral , Cromatina/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , RNA Longo não Codificante/genética
3.
Adv Exp Med Biol ; 1008: 1-46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28815535

RESUMO

The RNA World Hypothesis suggests that prebiotic life revolved around RNA instead of DNA and proteins. Although modern cells have changed significantly in 4 billion years, RNA has maintained its central role in cell biology. Since the discovery of DNA at the end of the nineteenth century, RNA has been extensively studied. Many discoveries such as housekeeping RNAs (rRNA, tRNA, etc.) supported the messenger RNA model that is the pillar of the central dogma of molecular biology, which was first devised in the late 1950s. Thirty years later, the first regulatory non-coding RNAs (ncRNAs) were initially identified in bacteria and then in most eukaryotic organisms. A few long ncRNAs (lncRNAs) such as H19 and Xist were characterized in the pre-genomic era but remained exceptions until the early 2000s. Indeed, when the sequence of the human genome was published in 2001, studies showed that only about 1.2% encodes proteins, the rest being deemed "non-coding." It was later shown that the genome is pervasively transcribed into many ncRNAs, but their functionality remained controversial. Since then, regulatory lncRNAs have been characterized in many species and were shown to be involved in processes such as development and pathologies, revealing a new layer of regulation in eukaryotic cells. This newly found focus on lncRNAs, together with the advent of high-throughput sequencing, was accompanied by the rapid discovery of many novel transcripts which were further characterized and classified according to specific transcript traits.In this review, we will discuss the many discoveries that led to the study of lncRNAs, from Friedrich Miescher's "nuclein" in 1869 to the elucidation of the human genome and transcriptome in the early 2000s. We will then focus on the biological relevance during lncRNA evolution and describe their basic features as genes and transcripts. Finally, we will present a non-exhaustive catalogue of lncRNA classes, thus illustrating the vast complexity of eukaryotic transcriptomes.


Assuntos
Genoma Humano , RNA Longo não Codificante , Transcriptoma , Animais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , História do Século XX , História do Século XXI , Humanos , RNA Longo não Codificante/classificação , RNA Longo não Codificante/genética , RNA Longo não Codificante/história , RNA Longo não Codificante/metabolismo
4.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464236

RESUMO

Multimodal measurements have become widespread in genomics, however measuring open chromatin accessibility and splicing simultaneously in frozen brain tissues remains unconquered. Hence, we devised Single-Cell-ISOform-RNA sequencing coupled with the Assay-for-Transposase-Accessible-Chromatin (ScISOr-ATAC). We utilized ScISOr-ATAC to assess whether chromatin and splicing alterations in the brain convergently affect the same cell types or divergently different ones. We applied ScISOr-ATAC to three major conditions: comparing (i) the Rhesus macaque (Macaca mulatta) prefrontal cortex (PFC) and visual cortex (VIS), (ii) cross species divergence of Rhesus macaque versus human PFC, as well as (iii) dysregulation in Alzheimer's disease in human PFC. We found that among cortical-layer biased excitatory neuron subtypes, splicing is highly brain-region specific for L3-5/L6 IT_RORB neurons, moderately specific in L2-3 IT_CUX2.RORB neurons and unspecific in L2-3 IT_CUX2 neurons. In contrast, at the chromatin level, L2-3 IT_CUX2.RORB neurons show the highest brain-region specificity compared to other subtypes. Likewise, when comparing human and macaque PFC, strong evolutionary divergence on one molecular modality does not necessarily imply strong such divergence on another molecular level in the same cell type. Finally, in Alzheimer's disease, oligodendrocytes show convergently high dysregulation in both chromatin and splicing. However, chromatin and splicing dysregulation most strongly affect distinct oligodendrocyte subtypes. Overall, these results indicate that chromatin and splicing can show convergent or divergent results depending on the performed comparison, justifying the need for their concurrent measurement to investigate complex systems. Taken together, ScISOr-ATAC allows for the characterization of single-cell splicing and chromatin patterns and the comparison of sample groups in frozen brain samples.

5.
Transcription ; 14(3-5): 92-104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37314295

RESUMO

The profiling of gene expression patterns to glean biological insights from single cells has become commonplace over the last few years. However, this approach overlooks the transcript contents that can differ between individual cells and cell populations. In this review, we describe early work in the field of single-cell short-read sequencing as well as full-length isoforms from single cells. We then describe recent work in single-cell long-read sequencing wherein some transcript elements have been observed to work in tandem. Based on earlier work in bulk tissue, we motivate the study of combination patterns of other RNA variables. Given that we are still blind to some aspects of isoform biology, we suggest possible future avenues such as CRISPR screens which can further illuminate the function of RNA variables in distinct cell populations.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Processamento Alternativo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA/genética , Análise de Sequência de RNA , Sequenciamento de Nucleotídeos em Larga Escala
6.
Nat Biotechnol ; 41(7): 915-918, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36593406

RESUMO

Annotating newly sequenced genomes and determining alternative isoforms from long-read RNA data are complex and incompletely solved problems. Here we present IsoQuant-a computational tool using intron graphs that accurately reconstructs transcripts both with and without reference genome annotation. For novel transcript discovery, IsoQuant reduces the false-positive rate fivefold and 2.5-fold for Oxford Nanopore reference-based or reference-free mode, respectively. IsoQuant also improves performance for Pacific Biosciences data.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , RNA , Isoformas de Proteínas/genética , Análise de Sequência de RNA , Genoma , Análise de Sequência de DNA
7.
Nat Biotechnol ; 40(7): 1082-1092, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256815

RESUMO

Single-nuclei RNA sequencing characterizes cell types at the gene level. However, compared to single-cell approaches, many single-nuclei cDNAs are purely intronic, lack barcodes and hinder the study of isoforms. Here we present single-nuclei isoform RNA sequencing (SnISOr-Seq). Using microfluidics, PCR-based artifact removal, target enrichment and long-read sequencing, SnISOr-Seq increased barcoded, exon-spanning long reads 7.5-fold compared to naive long-read single-nuclei sequencing. We applied SnISOr-Seq to adult human frontal cortex and found that exons associated with autism exhibit coordinated and highly cell-type-specific inclusion. We found two distinct combination patterns: those distinguishing neural cell types, enriched in TSS-exon, exon-polyadenylation-site and non-adjacent exon pairs, and those with multiple configurations within one cell type, enriched in adjacent exon pairs. Finally, we observed that human-specific exons are almost as tightly coordinated as conserved exons, implying that coordination can be rapidly established during evolution. SnISOr-Seq enables cell-type-specific long-read isoform analysis in human brain and in any frozen or hard-to-dissociate sample.


Assuntos
Encéfalo , RNA , Processamento Alternativo/genética , Encéfalo/metabolismo , Éxons/genética , Humanos , Isoformas de Proteínas/genética , RNA/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA