Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO Rep ; 23(12): e55481, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36268581

RESUMO

Most CRISPR-type V nucleases are stimulated to cleave double-stranded (ds) DNA targets by a T-rich PAM, which restricts their targeting range. Here, we identify and characterize a new family of type V RNA-guided nuclease, Cas12l, that exclusively recognizes a C-rich (5'-CCY-3') PAM. The organization of genes within its CRISPR locus is similar to type II-B CRISPR-Cas9 systems, but both sequence analysis and functional studies establish it as a new family of type V effector. Biochemical experiments show that Cas12l nucleases function optimally between 37 and 52°C, depending on the ortholog, and preferentially cut supercoiled DNA. Like other type V nucleases, it exhibits collateral nonspecific ssDNA and ssRNA cleavage activity that is triggered by ssDNA or dsDNA target recognition. Finally, we show that one family member, Asp2Cas12l, functions in a heterologous cellular environment, altogether, suggesting that this new group of CRISPR-associated nucleases may be harnessed as genome editing reagents.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
2.
Nat Commun ; 11(1): 5512, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139742

RESUMO

Bacterial Cas9 nucleases from type II CRISPR-Cas antiviral defence systems have been repurposed as genome editing tools. Although these proteins are found in many microbes, only a handful of variants are used for these applications. Here, we use bioinformatic and biochemical analyses to explore this largely uncharacterized diversity. We apply cell-free biochemical screens to assess the protospacer adjacent motif (PAM) and guide RNA (gRNA) requirements of 79 Cas9 proteins, thus identifying at least 7 distinct gRNA classes and 50 different PAM sequence requirements. PAM recognition spans the entire spectrum of T-, A-, C-, and G-rich nucleotides, from single nucleotide recognition to sequence strings longer than 4 nucleotides. Characterization of a subset of Cas9 orthologs using purified components reveals additional biochemical diversity, including both narrow and broad ranges of temperature dependence, staggered-end DNA target cleavage, and a requirement for long stretches of homology between gRNA and DNA target. Our results expand the available toolset of RNA-programmable CRISPR-associated nucleases.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Biologia Computacional , Clivagem do DNA , RNA Guia de Cinetoplastídeos/metabolismo , Homologia de Sequência do Ácido Nucleico
3.
Eur J Pharmacol ; 799: 143-153, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28192098

RESUMO

Development of acute myeloid leukemia is usually sustained by deregulated epigenome. Alterations in DNA methylation and histone modifications are common manifestations of the disease. Acute promyelocytic leukemia (APL) is not an exception. Therefore, drugs that target epigenetic processes suggest an appealing strategy for APL treatment. In this study we tested the anti-leukemic activity of histone deacetylase inhibitor (HDACi) Belinostat (PXD101, (2E)-N-Hydroxy-3-[3-(phenylsulfamoyl)phenyl]prop-2-enamide), and histone methyltransferase inhibitor (HMTi) 3-Deazaneplanocin A (DZNep, 5R-(4-amino-1H-imidazo[4,5-c]pyridin-1-yl)-3-(hydroxymethyl)-3-cyclopentene-1S,2R-diol) combined with retinoic acid (RA) in APL cells NB4 and HL-60. We demonstrated that APL cell treatment with combinations of differentiation inductor RA, HDACi Belinostat and HMTi DZNep caused a depletion of leukemia cell growth and viability, initiated apoptosis and exaggerated RA induced granulocytic differentiation. Also an increased expression of transcription factors C/EBPε and PPARγ was demonstrated, while no significant reduction in C/EBPα gene level was detected. Furthermore, combined treatment depleted gene expression levels of EZH2 and SUZ12, especially in HL-60 cells, and diminished protein levels of Polycomb Repressive Complex 2 (PRC2) components EZH2, SUZ12 and EED. In addition, our study has shown that Belinostat and DZNep together with RA caused a depletion in HDAC1 and HDAC2 protein levels, HDAC2 gene expression and increased hyperacetylation of histone H4 in both leukemia cell lines. Using ChIP method we also demonstrated the increased association of hyperacetylated histone H4 with the C/EBPα and C/EBPε promoter regions in HL-60 cells. Summarizing, these findings indicate that combined treatment with RA, Belinostat and 3-Deazaneplanocin A is an effective epigenetic inducer for leukemia cell differentiation.


Assuntos
Adenosina/análogos & derivados , Inibidores de Histona Desacetilases/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Ácidos Hidroxâmicos/farmacologia , Leucemia Promielocítica Aguda/patologia , Sulfonamidas/farmacologia , Acetilação/efeitos dos fármacos , Adenosina/farmacologia , Apoptose/efeitos dos fármacos , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Diferenciação Celular/efeitos dos fármacos , Interações Medicamentosas , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Histona Metiltransferases , Histonas/metabolismo , Humanos , Proteínas de Neoplasias , Complexo Repressor Polycomb 2/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Fatores de Transcrição , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA