Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 790, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160502

RESUMO

Metal contamination of aquatic environments remains a major concern due to their persistence. The water flea Daphnia magna is an important model species for metal toxicity studies and water quality assessment. However, most research has focused on physiological endpoints such as mortality, growth, and reproduction in laboratory settings, as well as neglected toxicogenomic responses. Copper (Cu) and zinc (Zn) are essential trace elements that play crucial roles in many biological processes, including iron metabolism, connective tissue formation, neurotransmitter synthesis, DNA synthesis, and immune function. Excess amounts of these metals result in deviations from homeostasis and may induce toxic responses. In this study, we analyzed Daphnia magna transcriptomic responses to IC5 levels of Cu (120 µg/L) and Zn (300 µg/L) in environmental water obtained from a pristine lake with adjusted water hardness (150 mg/L CaCO3). The study was carried out to gain insights into the Cu and Zn regulated stress response mechanisms in Daphnia magna at transcriptome level. A total of 2,688 and 3,080 genes were found to be differentially expressed (DEG) between the control and Cu and the control and Zn, respectively. There were 1,793 differentially expressed genes in common for both Cu and Zn, whereas the number of unique DEGs for Cu and Zn were 895 and 1,287, respectively. Gene ontology and KEGG pathways enrichment were carried out to identify the molecular functions and biological processes affected by metal exposures. In addition to well-known biomarkers, novel targets for metal toxicity screening at the genomic level were identified.


Assuntos
Cobre , Daphnia , Transcriptoma , Poluentes Químicos da Água , Zinco , Daphnia/genética , Daphnia/efeitos dos fármacos , Daphnia/metabolismo , Animais , Cobre/toxicidade , Zinco/toxicidade , Poluentes Químicos da Água/toxicidade , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão Gênica , Daphnia magna
2.
J Water Health ; 20(6): 903-914, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35768966

RESUMO

Carbapenemase-producing Aeromonas species are an emerging health threat. This study aimed to determine carbapenemase-mediated resistance among Aeromonas isolates from the Akaki river, Ethiopia during the dry and wet seasons in 2019-2020. Antimicrobial susceptibility to carbapenems and cephalosporins was determined and carbapenemase production was confirmed. Of 163 isolates, the majority were human pathogens Aeromonas caviae (62), Aeromonas hydrophila (33) and Aeromonas veronii (49). These isolates were resistant to carbapenem and cephalosporin antibiotics, with the highest resistance to cefotaxime 86 (59.7%), ertapenem 71 (49.3%) and imipenem 65 (45.1%). Resistance to carbapenem antibiotics varied between species, where most A. veronii 37 (75.5%) and A. hydrophila 28 (84.8%) were resistant to imipenem and all A. caviae were sensitive. A. veronii, A. caviae and A. hydrophila resistance to meropenem was 31 (63.3%), 3 (4.8%) and 19 (57.6%), respectively. Of isolates resistant to carbapenem, 82.1% A. hydrophila and 94.4% A. veronii were carbapenemase producers. Cephalosporin resistance also varied among the different species. The highest resistance to carbapenem antibiotics was in isolates collected during the wet season (p<0.05); however, it was not consistent across all classes of antibiotics tested. The rivers in megacities could be reservoirs of carbapenemase-producing Aeromonas spp.


Assuntos
Aeromonas , Antibacterianos/farmacologia , Proteínas de Bactérias , Carbapenêmicos/farmacologia , Etiópia , Humanos , Imipenem , Testes de Sensibilidade Microbiana , Rios , beta-Lactamases
3.
J Appl Toxicol ; 42(9): 1510-1523, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35285959

RESUMO

Zinc is an essential trace metal required for the maintenance of multiple physiological functions. Due to this, organisms can experience both zinc deficiency and toxicity. Hardness is recognized as one of the main modifying physiochemical factors regulating zinc bioavailability. Therefore, the present study analyzed the effect of hardness on zinc toxicity using Daphnia magna. Endpoint parameters were acute-toxicity, development, reproduction, and expression data for genes involved in metal regulation and oxidative stress. In addition, the temporal expression profiles of genes during the initiation of reproduction and molting were investigated. Water hardness influenced the survival in response to exposures to zinc. A zinc concentration of 50 µg/l in soft water (50 mg CaCO3 /L) caused 73% mortality after 96 h exposure, whereas the same zinc concentration in the hardest water did not cause any significant mortality. Moreover, increasing water hardness from 100 to 200 mg CaCO3 /L resulted in a reduced number of offspring. Fecundity was higher at first brood for groups exposed to higher Zn concentrations. The survival data were used to assess the precision of the bioavailability models (Bio-met) and the geochemical model (Visual MINTEQ). As the Bio-met risk predictions overestimated the Zn toxicity, a competition-based model to describe the effects of hardness on zinc toxicity is proposed. This approach can be used to minimize differences in setting environmental quality standards. Moreover, gene expression data showed that using the toxicogenomic approach was more sensitive than the physiological endpoints. Therefore, data presented in the study can be used to improve risk assessment for zinc toxicity.


Assuntos
Daphnia , Poluentes Químicos da Água , Animais , Dureza , Água/metabolismo , Poluentes Químicos da Água/metabolismo , Zinco/toxicidade
4.
Environ Monit Assess ; 194(5): 349, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394223

RESUMO

Pollution of the aquatic environment is a global problem, with industrial waste, farming effluents, sewage, and wastewater as the main contributors. Many pollutants are biologically active at low concentrations, resulting in sublethal effects, which makes it a highly complex situation and difficult to assess. In many places, such as the Akaki river in Ethiopia, the pollution situation has resulted in streams with minimal presence of invertebrates or vertebrates. As it is difficult to perform a complete chemical analysis of the waters, the present study focused on using gene expression analysis as a biological end point to determine the effects of Akaki river contaminants. The present study was conducted using the small planktonic crustacean Daphnia magna with toxicogenomic molecular markers. Daphnia magna neonates were exposed to Akaki water samples collected from two different sites on the river and analyzed for mortality and expression of genes involved in different biological pathways. Despite the poor quality of Akaki river water, 48 h acute toxicity tests showed no mortality. Interestingly, analysis of sublethal toxicogenomic responses showed that exposure to Akaki water altered the expression of 25 out of 37 genes involved in metal regulation, immune response, oxidative stress, respiration, reproduction, and development. The toxicogenomic data gives insight into the mechanisms involved in causing potential adverse effects to aquatic biota harboring the Akaki river system.


Assuntos
Daphnia , Poluentes Químicos da Água , Animais , Monitoramento Ambiental/métodos , Rios/química , Água/análise , Poluentes Químicos da Água/análise
5.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073352

RESUMO

Helicobacter pylori is a prevalent bacterium that can cause gastric ulcers and cancers. Lactic acid bacteria (LAB) ameliorate treatment outcomes against H. pylori, suggesting that they could be a source of bioactive molecules usable as alternatives to current antibiotics for which resistance is mounting. We developed an in vitro framework to compare the anti-H. pylori properties of 25 LAB and their secretions against H. pylori. All studies were done at acidic and neutralized pH, with or without urea to mimic various gastric compartments. Eighteen LAB strains secreted molecules that curtailed the growth of H. pylori and the activity was urea-resistant in five LAB. Several LAB supernatants also reduced the urease activity of H. pylori. Pre-treatment of H. pylori with acidic LAB supernatants abrogated its flagella-mediated motility and decreased its ability to elicit pro-inflammatory IL-8 cytokine from human gastric cells, without reverting the H. pylori-induced repression of other pro-inflammatory cytokines. This study identified the LAB that have the most anti-H. pylori effects, decreasing its viability, its production of virulence factors, its motility and/or its ability to elicit pro-inflammatory IL-8 from gastric cells. Once identified, these molecules can be used as alternatives or complements to current antibiotics to fight H. pylori infections.


Assuntos
Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Infecções por Helicobacter , Helicobacter pylori/crescimento & desenvolvimento , Interleucina-8/metabolismo , Lactobacillales , Antibacterianos , Linhagem Celular , Mucosa Gástrica/patologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/terapia , Humanos , Concentração de Íons de Hidrogênio
6.
J Antimicrob Chemother ; 74(12): 3497-3504, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504587

RESUMO

OBJECTIVES: To investigate the in vitro activity of ceftazidime/avibactam and ceftolozane/tazobactam against clinical isolates of MDR Pseudomonas aeruginosa from Qatar, as well as the mechanisms of resistance. METHODS: MDR P. aeruginosa isolated between October 2014 and September 2015 from all public hospitals in Qatar were included. The BD PhoenixTM system was used for identification and initial antimicrobial susceptibility testing, while Liofilchem MIC Test Strips (Liofilchem, Roseto degli Abruzzi, Italy) were used for confirmation of ceftazidime/avibactam and ceftolozane/tazobactam susceptibility. Ten ceftazidime/avibactam- and/or ceftolozane/tazobactam-resistant isolates were randomly selected for WGS. RESULTS: A total of 205 MDR P. aeruginosa isolates were included. Of these, 141 (68.8%) were susceptible to ceftazidime/avibactam, 129 (62.9%) were susceptible to ceftolozane/tazobactam, 121 (59.0%) were susceptible to both and 56 (27.3%) were susceptible to neither. Twenty (9.8%) isolates were susceptible to ceftazidime/avibactam but not to ceftolozane/tazobactam and only 8 (3.9%) were susceptible to ceftolozane/tazobactam but not to ceftazidime/avibactam. Less than 50% of XDR isolates were susceptible to ceftazidime/avibactam or ceftolozane/tazobactam. The 10 sequenced isolates belonged to six different STs and all produced AmpC and OXA enzymes; 5 (50%) produced ESBL and 4 (40%) produced VIM enzymes. CONCLUSIONS: MDR P. aeruginosa susceptibility rates to ceftazidime/avibactam and ceftolozane/tazobactam were higher than those to all existing antipseudomonal agents, except colistin, but were less than 50% in extremely resistant isolates. Non-susceptibility to ceftazidime/avibactam and ceftolozane/tazobactam was largely due to the production of ESBL and VIM enzymes. Ceftazidime/avibactam and ceftolozane/tazobactam are possible options for some patients with MDR P. aeruginosa in Qatar.


Assuntos
Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana Múltipla , Pseudomonas aeruginosa/efeitos dos fármacos , Tazobactam/farmacologia , Combinação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Estudos Prospectivos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Catar , Sequenciamento Completo do Genoma
7.
Environ Res ; 168: 406-413, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388497

RESUMO

Although people are exposed daily to per- and polyfluorinated alkyl substances (PFASs), the biological consequences are poorly explored. The health risks associated with PFAS exposure are currently based on chemical analysis with a weak correlation to potential harmful effects in man and animals. In this study, we show that perfluorooctane sulfonic acid (PFOS), often the most enriched PFAS in the environment, can be transferred via bacteria to higher organisms such as Caenorhabditis elegans. C. elegans nematodes were exposed to PFOS directly in buffer or by feeding on bacteria pretreated with PFOS, and this led to distinct gene expression profiles. Specifically, heavy metal and heat shock associated genes were significantly, although inversely, expressed following the different PFOS exposures. The innate immunity receptor for microbial pathogens, clec-60, was shown for the first time to be down-regulated by PFOS. This is in line with a previous study indicating that PFOS is associated with children's susceptibility to certain infectious diseases. Furthermore, bar-1, a gene associated with various cancers was highly up-regulated only when C. elegans were exposed to PFOS pretreated live bacteria. Furthermore, dead bacterial biomass had higher binding capacity for linear and isomeric PFOS than live bacteria, which correlated to the higher levels of PFOS detected in C. elegans when fed the treated E. coli, respectively. These results reveal new aspects concerning trophic chain transport of PFOS.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Caenorhabditis elegans/fisiologia , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Ácidos Alcanossulfônicos/metabolismo , Animais , Poluentes Ambientais/metabolismo , Escherichia coli , Fluorocarbonos/metabolismo
8.
Eur J Clin Microbiol Infect Dis ; 37(12): 2241-2251, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30171482

RESUMO

Carbapenem antibiotics are one of the last-resort agents against multidrug-resistant (MDR) bacteria. The occurrence of carbapenemase-producing Enterobacteriaceae (CPE) in wastewater and aquatic environments is an indication of MDR bacteria in the community. This study evaluated CPE in aquatic environments and compared them to the local hospital isolates in Sweden. Phenotypic and genotypic analyses of antibiotic resistance of environmental and clinical CPE were performed. The relatedness of the isolates and possible clonal dissemination was evaluated using phylogenetic and phyloproteomic analysis. Klebsiella oxytoca carrying carbapenemase genes (blaVIM-1, blaIMP-29) were isolated from wastewater and the recipient river, while K. oxytoca (blaVIM-1) and Klebsiella pneumoniae (blaVIM-1, blaOXA-48, blaNDM-1, blaKPC-3) were isolated from patients at the local clinics or hospital. The K. oxytoca classified as sequence type 172 (ST172) isolated from the river was genotypically related to two clinical isolates recovered from patients. The similarity between environmental and clinical isolates suggests the dispersion of blaVIM-1 producing K. oxytoca ST172 from hospital to aquatic environment and the likelihood of its presence in the community. This is the first report of CPE in aquatic environments in Sweden; therefore, surveillance of aquatic and hospital environments for CPE in other urban areas is important to determine the major transfer routes in order to formulate strategies to prevent the spread of MDR bacteria.


Assuntos
Infecção Hospitalar/epidemiologia , Infecções por Klebsiella/epidemiologia , Klebsiella oxytoca/isolamento & purificação , Klebsiella pneumoniae/isolamento & purificação , Proteínas de Bactérias/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Carbapenêmicos/farmacologia , DNA Bacteriano/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/genética , Genótipo , Hospitais , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Filogenia , Rios/microbiologia , Suécia/epidemiologia , Águas Residuárias/microbiologia , Microbiologia da Água , Sequenciamento Completo do Genoma , beta-Lactamases/genética
9.
Antimicrob Agents Chemother ; 60(7): 4369-74, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27139480

RESUMO

We have analyzed the contribution of different efflux components to glutathione-mediated abrogation of ciprofloxacin's activity in Escherichia coli and the underlying potential mechanism(s) behind this phenomenon. The results indicated that glutathione increased the total active efflux, thereby partially contributing to glutathione-mediated neutralization of ciprofloxacin's antibacterial action in E. coli However, the role of glutathione-mediated increased efflux becomes evident in the absence of a functional TolC-AcrAB efflux pump.


Assuntos
Ciprofloxacina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/genética , Glutationa/metabolismo , Testes de Sensibilidade Microbiana
10.
Genomics ; 106(6): 384-92, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26387925

RESUMO

Previously, we reported an arsenic resistant bacterium Lysinibacillus sphaericus B1-CDA, isolated from an arsenic contaminated lands. Here, we have investigated its genetic composition and evolutionary history by using massively parallel sequencing and comparative analysis with other known Lysinibacillus genomes. Assembly of the sequencing reads revealed a genome of ~4.5 Mb in size encompassing ~80% of the chromosomal DNA. We found that the set of ordered contigs contains abundant regions of similarity with other Lysinibacillus genomes and clearly identifiable genome rearrangements. Furthermore, all genes of B1-CDA that were predicted be involved in its resistance to arsenic and/or other heavy metals were annotated. The presence of arsenic responsive genes was verified by PCR in vitro conditions. The findings of this study highlight the significance of this bacterium in removing arsenics and other toxic metals from the contaminated sources. The genetic mechanisms of the isolate could be used to cope with arsenic toxicity.


Assuntos
Arsênio/metabolismo , Bacillaceae/genética , Genoma Bacteriano/genética , Genômica/métodos , Arsênio/farmacologia , Bacillaceae/classificação , Bacillaceae/metabolismo , Biodegradação Ambiental , Cromossomos Bacterianos/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Variação Genética , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
11.
Artigo em Inglês | MEDLINE | ID: mdl-26191988

RESUMO

Chromium and chromium containing compounds are discharged into the nature as waste from anthropogenic activities, such as industries, agriculture, forest farming, mining and metallurgy. Continued disposal of these compounds to the environment leads to development of various lethal diseases in both humans and animals. In this paper, we report a soil borne bacterium, B2-DHA that can be used as a vehicle to effectively remove chromium from the contaminated sources. B2-DHA is resistant to chromium with a MIC value of 1000 µg mL(-1) potassium chromate. The bacterium has been identified as a Gram negative, Enterobacter cloacae based on biochemical characteristics and 16S rRNA gene analysis. TOF-SIMS and ICP-MS analyses confirmed intracellular accumulation of chromium and thus its removal from the contaminated liquid medium. Chromium accumulation in cells was 320 µg/g of cells dry biomass after 120-h exposure, and thus it reduced the chromium concentration in the liquid medium by as much as 81%. Environmental scanning electron micrograph revealed the effect of metals on cellular morphology of the isolates. Altogether, our results indicate that B2-DHA has the potential to reduce chromium significantly to safe levels from the contaminated environments and suggest the potential use of this bacterium in reducing human exposure to chromium, hence avoiding poisoning.


Assuntos
Cromo/metabolismo , Enterobacter cloacae/genética , Enterobacter cloacae/metabolismo , Resíduos Industriais/análise , Poluentes do Solo/isolamento & purificação , Bangladesh , Biodegradação Ambiental , Enterobacter cloacae/efeitos dos fármacos , Filogenia , Microbiologia do Solo , Curtume
12.
Artigo em Inglês | MEDLINE | ID: mdl-25072766

RESUMO

The main objective of this study was to identify and isolate arsenic resistant bacteria that can be used for removing arsenic from the contaminated environment. Here we report a soil borne bacterium, B1-CDA that can serve this purpose. B1-CDA was isolated from the soil of a cultivated land in Chuadanga district located in the southwest region of Bangladesh. The morphological, biochemical and 16S rRNA analysis suggested that the isolate belongs to Lysinibacillus sphaericus. The minimum inhibitory concentration (MIC) value of the isolate is 500 mM (As) as arsenate. TOF-SIMS and ICP-MS analysis confirmed intracellular accumulation and removal of arsenics. Arsenic accumulation in cells amounted to 5.0 mg g(-1) of the cells dry biomass and thus reduced the arsenic concentration in the contaminated liquid medium by as much as 50%. These results indicate that B1-CDA has the potential for remediation of arsenic from the contaminated water. We believe the benefits of implementing this bacterium to efficiently reduce arsenic exposure will not only help to remove one aspect of human arsenic poisoning but will also benefit livestock and native animal species. Therefore, the outcome of this research will be highly significant for people in the affected area and also for human populations in other countries that have credible health concerns as a consequence of arsenic-contaminated water.


Assuntos
Arsênio/metabolismo , Bacillaceae/isolamento & purificação , Bacillaceae/metabolismo , Poluentes Químicos da Água/metabolismo , Arsênio/análise , Bacillaceae/classificação , Bacillaceae/genética , Bangladesh , Biodegradação Ambiental , Humanos , Dados de Sequência Molecular , Filogenia , Microbiologia do Solo , Poluentes Químicos da Água/análise
13.
Metabolites ; 14(6)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38921461

RESUMO

Biocide resistance poses a significant challenge in industrial processes, with bacteria like Pseudomonas oleovorans exhibiting intrinsic resistance to traditional antimicrobial agents. In this study, the impact of biocide exposure on the metabolome of two P. oleovorans strains, namely, P. oleovorans P4A, isolated from contaminated coating material, and P. oleovorans 1045 reference strain, were investigated. The strains were exposed to 2-Methylisothiazol-3(2H)-one (MI) MIT, 1,2-Benzisothiazol-3(2H)-one (BIT), and 5-chloro-2-methyl-isothiazol-3-one (CMIT) at two different sub-inhibitory concentrations and the lipids and polar and semipolar metabolites were analyzed by ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry UPLC-Q-TOF/MS. Exposure to the BIT biocide induced significant metabolic modifications in P. oleovorans. Notable changes were observed in lipid and metabolite profiles, particularly in phospholipids, amino acid metabolism, and pathways related to stress response and adaptation. The 1045 strain showed more pronounced metabolic alterations than the P4A strain, suggesting potential implications for lipid, amino acid metabolism, energy metabolism, and stress adaptation. Improving our understanding of how different substances interact with bacteria is crucial for making antimicrobial chemicals more effective and addressing the challenges of resistance. We observed that different biocides trigged significantly different metabolic responses in these strains. Our study shows that metabolomics can be used as a tool for the investigation of metabolic mechanisms underlying biocide resistance, and thus in the development of targeted biocides. This in turn can have implications in combating biocide resistance in bacteria such as P. oleovorans.

14.
Biology (Basel) ; 12(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37237504

RESUMO

Zinc (Zn) is an essential element that influences many cellular functions. Depending on bioavailability, Zn can cause both deficiency and toxicity. Zn bioavailability is influenced by water hardness. Therefore, water quality analysis for health-risk assessment should consider both Zn concentration and water hardness. However, exposure media selection for traditional toxicology tests are set to defined hardness levels and do not represent the diverse water chemistry compositions observed in nature. Moreover, these tests commonly use whole organism endpoints, such as survival and reproduction, which require high numbers of test animals and are labor intensive. Gene expression stands out as a promising alternative to provide insight into molecular events that can be used for risk assessment. In this work, we apply machine learning techniques to classify the Zn concentrations and water hardness from Daphnia magna gene expression by using quantitative PCR. A method for gene ranking was explored using techniques from game theory, namely, Shapley values. The results show that standard machine learning classifiers can classify both Zn concentration and water hardness simultaneously, and that Shapley values are a versatile and useful alternative for gene ranking that can provide insight about the importance of individual genes.

15.
Environ Pollut ; 333: 122038, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321315

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are anthropogenic compounds threatening water quality and food safety worldwide. Phytoremediation is a nature-based, cost-effective, and scalable solution with high potential for treating PFAS-contaminated sites. However, there is a large knowledge gap regarding choice of plant species and methods to enhance performance. This study assessed the PFAS phytoextraction potential of sunflower (Helianthus annuus), mustard (Brassica juncea), and industrial hemp (Cannabis sativa) in a greenhouse experiment, using inorganic fertilizer and a microbial mixture as supplements. PFAS concentrations were measured using UPLC-MS/MS, and bioconcentration factors for different plant tissues and removal efficiency were determined. Perfluoroalkyl carboxylic acid (PFCA) accumulation was 0.4-360 times higher than that of perfluoroalkyl sulfonic acid (PFSA) homologues of similar perfluorocarbon chain length. Inorganic fertilizer significantly (p < 0.001) reduced PFAS concentration in all plant tissues, whereas the microbial mixture tested did not affect PFAS concentration. PFAS uptake ranged from 0.2 to 33% per crop cycle. Overall, the potential number of crop cycles required for removal of 90% of individual PFAS ranged from six (PFPeA) to 232 (PFOA) using sunflower, 15 (PFPeA) to 466 (PFOS) using mustard and nine (PFPeA) to 420 (PFOS) using Hemp. In this study, the percentage of PFAS removal by plants was determined, and an estimation of the time required for PFAS phytoextraction was determined for the first time. This information is important for practical phytoremediation applications.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Helianthus , Poluentes Químicos da Água , Fertilizantes , Cromatografia Líquida , Espectrometria de Massas em Tandem , Produtos Agrícolas , Fluorocarbonos/análise , Mostardeira , Poluentes Químicos da Água/análise
16.
PLoS One ; 18(7): e0288517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450423

RESUMO

BACKGROUND: Diarrhea is a serious health problem in children, with the highest mortality rate in sub-Saharan Africa. Diarrheagenic Escherichia coli (DEC) is among the major bacterial causes of diarrhea in children under age five. The present study aims to determine molecular epidemiology and antimicrobial resistance profiles of DEC and identify contributing factors for acquisition among children under age five in Central Ethiopia. METHODS: A health facility-centered cross-sectional study was conducted in Addis Ababa and Debre Berhan, Ethiopia, from December 2020 to August 2021. A total of 476 specimens, 391 from diarrheic and 85 from non-diarrheic children under age five were collected. Bacterial isolation and identification, antimicrobial susceptibility, and pathotype determination using polymerase chain reaction (PCR) were done. RESULTS: Of the 476 specimens analyzed, 89.9% (428/476) were positive for E. coli, of which 183 were positive for one or more genes coding DEC pathotypes. The overall prevalence of the DEC pathotype was 38.2% (183/476). The predominant DEC pathotype was enteroaggregative E. coli (EAEC) (41.5%, 76/183), followed by enterotoxigenic E. coli (21.3%, 39/183), enteropathogenic E. coli (15.3%, 28/183), enteroinvasive E. coli (12.6%, 23/183), hybrid strains (7.1%, 13/183), Shiga toxin-producing E. coli (1.6%, 3/183), and diffusely-adherent E. coli (0.6%, 1/183). DEC was detected in 40.7% (159/391) of diarrheic and 28.2% (24/85) in non-diarrheic children (p = 0.020). The majority of the DEC pathotypes were resistant to ampicillin (95.1%, 174/183) and tetracycline (91.3%, 167/183). A higher rate of resistance to trimethoprim-sulfamethoxazole (58%, 44/76), ciprofloxacin (22%, 17/76), ceftazidime and cefotaxime (20%, 15/76) was seen among EAEC pathotypes. Multidrug resistance (MDR) was detected in 43.2% (79/183) of the pathotypes, whereas extended spectrum ß-lactamase and carbapenemase producers were 16.4% (30/183) and 2.2% (4/183), respectively. CONCLUSION: All six common DEC pathotypes that have the potential to cause severe diarrheal outbreaks were found in children in the study area; the dominant one being EAEC with a high rate of MDR.


Assuntos
Escherichia coli Enteropatogênica , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Humanos , Criança , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Etiópia/epidemiologia , Epidemiologia Molecular , Estudos Transversais , Diarreia/microbiologia , Escherichia coli Enteropatogênica/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
17.
Sci Total Environ ; 905: 167340, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37751843

RESUMO

Metal contamination of aquatic environments remains a major concern and has received significant attention in recent years. The present study aimed to evaluate the effects of metal mixtures of varying concentrations over time in a lake receiving runoff water from a decommissioned mine. By subjecting several organisms to this water, we aimed to identify the most susceptible species, thus enabling a comprehensive evaluation of the risk posed by different toxins to the biotic environment. We have evaluated the effects of mixed metal exposure on survival and stress gene expression in selected invertebrate and vertebrate model species. Our observations revealed differences in sensitivity among the invertebrate models Caenorhabditis elegans, Daphnia magna, Ceriodaphnia dubia, and Heterocypris incongruens, as well as in the vertebrate model Zebrafish (Danio rerio) and two cell lines; a zebrafish liver cell line (ZFL) and a human hepatocellular carcinoma cell line (HepG2). While the sensitivity shows great variation among the tested species, the expression of metallothionein was consistent with the levels of metals found in the mixed exposure media. Despite differences in acute toxicity, the universal induction of mt1/A and mt2/B genes make them important biomarkers for assessing the environmental risk of metals.


Assuntos
Cladocera , Poluentes Químicos da Água , Animais , Humanos , Peixe-Zebra/metabolismo , Metais/toxicidade , Metais/metabolismo , Daphnia , Água/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
18.
BMC Microbiol ; 12: 15, 2012 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-22264349

RESUMO

BACKGROUND: Epithelial cells of the urinary tract recognize pathogenic bacteria through pattern recognition receptors on their surface, such as toll-like receptors (TLRs), and mount an immune response through the activation of the NF-kappaB pathway. Some uropathogenic bacteria can subvert these cellular responses, creating problems with how the host eliminates pathogens. Lactobacillus is a genus of lactic acid bacteria that are part of the microbiota and consist of many probiotic strains, some specifically for urogenital infections. Immunomodulation has emerged as an important mode of action of probiotic and commensal lactobacilli and given the importance of epithelial cells, we evaluated the effect of the urogenital probiotic Lactobacillus rhamnosus GR-1 on epithelial immune activation. RESULTS: Immune activation through the NF-kappaB pathway was initiated by stimulation of T24 urothelial cells with heat-killed Escherichia coli and this was further potentiated when cells were co-cultured with live L. rhamnosus GR-1. Heat-killed lactobacilli were poor activators of NF-kappaB. Concomitant stimulation of bladder cells with E. coli and L. rhamnosus GR-1 increased the levels of the pro-inflammatory cytokine TNF, whereas IL-6 and CXCL8 levels were reduced. Another probiotic, L. rhamnosus GG, was also able to potentiate NF-kappaB in these cells although at a significantly reduced level compared to the GR-1 strain. The transcript numbers and protein levels of the lipopolysaccharide receptor TLR4 were significantly increased after co-stimulation with E. coli and lactobacilli compared to controls. Furthermore, inhibition of TLR4 activation by polymixin B completely blocked the lactobacilli potentiation of NF-kappaB. CONCLUSIONS: The immunological outcome of E. coli challenge of bladder cells was influenced by probiotic L. rhamnosus GR-1, by enhancing the activation of NF-kappaB and TNF release. Thus the urogenital probiotic L. rhamnosus GR-1 modulated the activation of the NF-kappaB through increased levels of TLR4 on the bladder cells and altered subsequent release of cytokines from urothelial cells. By influencing immunological factors such as TLR4, important in the process of fighting pathogens, lactobacilli could facilitate pathogen recognition and infection clearance.


Assuntos
Escherichia coli/patogenicidade , Lacticaseibacillus rhamnosus/imunologia , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Bexiga Urinária/imunologia , Bexiga Urinária/microbiologia , Linhagem Celular , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , NF-kappa B/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/metabolismo
19.
Environ Pollut ; 314: 120294, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181932

RESUMO

Per- and Poly-fluoroalkyl substances (PFAS) are major persistent environmental contaminants. Epidemiological studies have linked PFAS exposures to altered immunity and increased occurrence of infections in children. However, the mechanisms leading to immune susceptibility to bacterial infections remains unclear. To elucidate the mechanism, transcriptional alteration in the Caenorhabditis elegans model caused by a PFAS contaminated environmental water and two reconstituted PFAS solutions were evaluated using RNA-sequencing. PFAS affected the expression of several genes involved in C. elegans immune surveillance to Gram-positive bacteria (cpr-2, tag-38, spp-1, spp-5, clec-7, clec-172). The combined exposure to PFAS and Staphylococcus aureus significantly reduced C. elegans survival and increased intestinal membrane permeability. Furthermore, the growth of S. aureus in the presence of PFAS increased the expression of virulence genes, specifically, the virulence gene regulator saeR and α-hemolysin, hla, which resulted in increased hemolytic activity. The present study demonstrated that PFAS exposure not only increased C. elegans susceptibility to pathogens by reducing host immunity and increasing intestinal membrane permeability, but also increased bacteria virulence. This presents a broader implication for humans and other animals, where environmental contaminants simultaneously reduce host resilience, while, increasing microbial pathogenicity.


Assuntos
Caenorhabditis elegans , Fluorocarbonos , Staphylococcus aureus , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Fluorocarbonos/toxicidade , Proteínas Hemolisinas , Imunidade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Virulência/genética , Poluentes Ambientais/toxicidade
20.
Sci Total Environ ; 835: 155377, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35460794

RESUMO

Exposure to toxic metals alters host response and that leads to disease development. Studies have revealed the effects of metals on microbial physiology, however, the role of metal resistant bacteria on host response to metals is unclear. The hypothesis that xenobiotic interactions between gut microbes and arsenic influence the host physiology and toxicity was assessed in a Caenorhabditis elegans model. The arsenic-resistant Lysinibacillus sphaericus B1CDA was fed to C. elegans to determine the host responses to arsenic in comparison to Escherichia coli OP50 food. L. sphaericus diet extended C. elegans lifespan compared to E. coli diet, with an increased expression of genes involved in lifespan, stress response and immunity (hif-1, hsp-16.2, mtl-2, abf-2, clec-60), as well as reduced fat accumulation. Arsenic-exposed worms fed L. sphaericus also had a longer lifespan than those fed E. coli and had an increased expression of genes involved in cytoprotection, stress resistance (mtl-1, mtl-2) and oxidative stress response (cyp-35A2, isp-1, ctl-2, sod-1), together with a decreased accumulation of reactive oxygen species (ROS). In comparison with E. coli, L. sphaericus B1CDA diet increased C. elegans fitness while detoxifying arsenic induced ROS and extending lifespan.


Assuntos
Arsênio , Caenorhabditis elegans , Animais , Arsênio/metabolismo , Bacillaceae , Caenorhabditis elegans/genética , Escherichia coli/metabolismo , Longevidade , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA