Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Connect Tissue Res ; 59(sup1): 52-54, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29745807

RESUMO

Current studies offer little insight on how epigenetic remodeling of bone-specific chromatin maintains bone mass in vivo. Understanding this gap and precise mechanism is pivotal for future therapeutic innovation to prevent bone loss. Recently, we found that low bone mass is associated with decreased H3K27 acetylation (activating histone modification) of bone specific gene promoters. Here, we aim to elucidate the epigenetic mechanisms by which a miRNA cluster controls bone synthesis and homeostasis by regulating chromatin accessibility and H3K27 acetylation. In order to decipher the epigenetic axis that regulates osteogenesis, we studied a drug inducible anti-miR-23a cluster (miR-23a ClZIP) knockdown mouse model. MiR-23a cluster knockdown (heterozygous) mice developed high bone mass. These mice displayed increased expression of Runx2 and Baf45a, essential factors for skeletogenesis; and decreased expression of Ezh2, a chromatin repressor indispensable for skeletogenesis. ChIP assays using miR-23a Cl knockdown calvarial cells revealed a BAF45A-EZH2 epigenetic antagonistic mechanism that maintains bone formation. Together, our findings support that the miR-23a Cl connection with tissue-specific RUNX2-BAF45A-EZH2 function is a novel molecular epigenetic axis through which a miRNA cluster orchestrates chromatin modification to elicit major effects on osteogenesis in vivo.


Assuntos
Diferenciação Celular/fisiologia , Epigênese Genética/fisiologia , Osteoblastos/metabolismo , Osteogênese/fisiologia , Acetilação , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/genética , Histonas/metabolismo , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/citologia
2.
Genesis ; 55(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28921880

RESUMO

Aggrecan (Acan), a large proteoglycan is abundantly expressed in cartilage tissue. Disruption of Acan gene causes dwarfism and perinatal lethality of homozygous mice. Because of sustained expression of Acan in the growth plate and articular cartilage, AgcCre model has been developed for the regulated ablation of target gene in chondrocytes. In this model, the IRES-CreERT-Neo-pgk transgene is knocked-in the 3'UTR of the Acan gene. We consistently noticed variable weight and size among the AgcCre littermates, prompting us to examine the cause of this phenotype. Wild-type, Cre-heterozygous (Agc+/Cre ), and Cre-homozygous (AgcCre/Cre ) littermates were indistinguishable at birth. However, by 1-month, AgcCre/Cre mice showed a significant reduction in body weight (18-27%) and body length (19-22%). Low body weight and dwarfism was sustained through adulthood and occurred in both genders. Compared with wild-type and Agc+/Cre littermates, long bones and vertebrae were shorter in AgcCre/Cre mice. Histological analysis of AgcCre/Cre mice revealed a significant reduction in the length of the growth plate and the thickness of articular cartilage. The amount of proteoglycan deposited in the cartilage of AgcCre/Cre mice was nearly half of the WT littermates. Analysis of gene expression indicates impaired differentiation of chondrocyte in hyaline cartilage of AgcCre/Cre mice. Notably, both Acan mRNA and protein was reduced by 50% in AgcCre/Cre mice. A strong correlation was noted between the level of Acan mRNA and the body length. Importantly, Agc+/Cre mice showed no overt skeletal phenotype. Thus to avoid misinterpretation of data, only the Agc+/Cre mice should be used for conditional deletion of a target gene in the cartilage tissue.


Assuntos
Agrecanas/genética , Nanismo/genética , Homozigoto , Agrecanas/metabolismo , Animais , Condrócitos/citologia , Condrócitos/metabolismo , Nanismo/metabolismo , Nanismo/patologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Cartilagem Hialina/metabolismo , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Blood ; 125(23): 3598-608, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25862559

RESUMO

The progression of multiple myeloma (MM) is governed by a network of molecular signals, the majority of which remain to be identified. Recent studies suggest that Runt-related transcription factor 2 (Runx2), a well-known bone-specific transcription factor, is also expressed in solid tumors, where expression promotes both bone metastasis and osteolysis. However, the function of Runx2 in MM remains unknown. The current study demonstrated that (1) Runx2 expression in primary human MM cells is significantly greater than in plasma cells from healthy donors and patients with monoclonal gammopathy of undetermined significance; (2) high levels of Runx2 expression in MM cells are associated with a high-risk population of MM patients; and (3) overexpression of Runx2 in MM cells enhanced tumor growth and disease progression in vivo. Additional studies demonstrated that MM cell-derived Runx2 promotes tumor progression through a mechanism involving the upregulation of Akt/ß-catenin/Survivin signaling and enhanced expression of multiple metastatic genes/proteins, as well as the induction of a bone-resident cell-like phenotype in MM cells. Thus, Runx2 expression supports the aggressive phenotype of MM and is correlated with poor prognosis. These data implicate Runx2 expression as a major regulator of MM progression in bone and myeloma bone disease.


Assuntos
Neoplasias Ósseas/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/metabolismo , Osteólise/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Metástase Neoplásica , Osteólise/etiologia , Osteólise/genética , Osteólise/patologia , Proteínas Proto-Oncogênicas c-akt , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Survivina , beta Catenina/genética , beta Catenina/metabolismo
4.
Nat Rev Cancer ; 7(6): 454-63, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17522714

RESUMO

Nucleic acids and regulatory proteins are compartmentalized in microenvironments within the nucleus. This subnuclear organization may support convergence and the integration of physiological signals for the combinatorial control of gene expression, DNA replication and repair. Nuclear organization is modified in many cancers. There are cancer-related changes in the composition, organization and assembly of regulatory complexes at intranuclear sites. Mechanistic insights into the temporal and spatial organization of machinery for gene expression within the nucleus, which is compromised in tumours, provide a novel platform for diagnosis and therapy.


Assuntos
Núcleo Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/ultraestrutura , Transporte Ativo do Núcleo Celular , Compartimento Celular , Núcleo Celular/ultraestrutura , Subunidades alfa de Fatores de Ligação ao Core/fisiologia , Humanos , Modelos Biológicos , Matriz Nuclear , Sequências Reguladoras de Ácido Nucleico
5.
Circ Res ; 111(5): 543-52, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22773442

RESUMO

RATIONALE: Vascular calcification is a hallmark of atherosclerosis, a major cause of morbidity and mortality in the United States. We have previously reported that the osteogenic transcription factor Runx2 is an essential and sufficient regulator of calcification of vascular smooth muscle cells (VSMC) in vitro. OBJECTIVE: To determine the contribution of osteogenic differentiation of VSMC to the pathogenesis of vascular calcification and the function of VSMC-derived Runx2 in regulating calcification in vivo. METHODS AND RESULTS: SMC-specific Runx2-deficient mice, generated by breeding SM22α-Cre mice with the Runx2 exon 8 floxed mice, exhibited normal aortic gross anatomy and expression levels of SMC-specific marker genes. Runx2 deficiency did not affect basal SMC markers, but inhibited oxidative stress-reduced expression of SMC markers. High-fat-diet-induced vascular calcification in vivo was markedly inhibited in the Runx2-deficient mice in comparison with their control littermates. Runx2 deficiency inhibited the expression of receptor activator of nuclear factor κB ligand, which was accompanied by decreased macrophage infiltration and formation of osteoclast-like cells in the calcified lesions. Coculture of VSMC with bone marrow-derived macrophages demonstrated that the Runx2-deficient VSMC failed to promote differentiation of macrophages into osteoclast-like cells. CONCLUSIONS: These data have determined the importance of osteogenic differentiation of VSMC in the pathogenesis of vascular calcification in mice and defined the functional role of SMC-derived Runx2 in regulating vascular calcification and promoting infiltration of macrophages into the calcified lesion to form osteoclast-like cells. Our studies suggest that the development of vascular calcification is coupled with the formation of osteoclast-like cells, paralleling the bone remodeling process.


Assuntos
Aterosclerose/patologia , Calcinose/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Fosfatase Ácida/metabolismo , Animais , Aterosclerose/fisiopatologia , Remodelação Óssea/fisiologia , Calcinose/fisiopatologia , Diferenciação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Subunidade alfa 1 de Fator de Ligação ao Core/deficiência , Dieta Hiperlipídica , Modelos Animais de Doenças , Éxons/genética , Feminino , Isoenzimas/metabolismo , Macrófagos/citologia , Masculino , Camundongos , Camundongos Knockout , Mutagênese/fisiologia , Osteoclastos/citologia , Ligante RANK/genética , Ligante RANK/metabolismo , Fosfatase Ácida Resistente a Tartarato
6.
Connect Tissue Res ; 55 Suppl 1: 102-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25158191

RESUMO

Runx2 transcription factor is essential for the development of mineralized tissue, and is required for osteoblast commitment and chondrocyte maturation. Mice with global deletion of Runx2 exhibit complete failure of bone tissue formation, while chondrocyte-specific Runx2-deficient mice lack endochondral ossification. However, the function of Runx2 after commitment of mesenchymal cells to the osteoblast lineage remains unknown. Here, we elucidate the osteoblast-specific requirements of Runx2 during development of the tissue. Runx2 was deleted in committed osteoblasts using Cre-recombinase driven by the 2.3kbCol1a1 promoter. Surprisingly, Runx2(ΔE8/ΔE8) mice were born alive and were essentially indistinguishable from wild-type littermates. At birth, we failed to detect any alterations in skeletal patterning or extent of bone development in homozygous mutants. However, by 4 weeks of age, mutant mice showed obvious growth deficiencies, and weighed 20-25% less than sex-matched wild-type littermates. Micro-CT analysis of the hindlimb revealed a dramatic decrease of 50% in both cortical and trabecular bone volume compared with wild-type mice. Consistent with this observation, trabecular number and thickness were decreased by 51% and 21%, respectively, and trabecular space was increased by 2-fold in limbs of Runx2(ΔE8/ΔE8) mice. In addition to poor acquisition of bone mass, the average density of hydroxyapatite was markedly decreased in bone of Runx2(ΔE8/ΔE8) mice. Together, these findings demonstrate that loss of Runx2 activity in committed osteoblasts impairs osteoblast function, and that Runx2 is critical for postnatal, but not embryonic endochondral ossification.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/genética , Animais , Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout
7.
Connect Tissue Res ; 55 Suppl 1: 83-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25158187

RESUMO

Runx2 and Sp7 transcription factors are essential for skeletogenesis. Targeted deletion of either gene results in failure of osteoblast differentiation and bone formation. Loss of bone-matrix gene expression is surprisingly similar in Sp7 and Runx2 null mice. The molecular mechanisms responsible for similar transcriptional regulation of target genes remain largely unknown. Here, we demonstrate that Runx2 and Sp7 interact physically and functionally. Both proteins are co-expressed in osteoblastic cells. We first characterized a panel of Sp7 antibodies and demonstrate that majority of the published antibodies do not recognize Sp7 protein. Co-immunoprecipitation studies revealed that endogenous Runx2 protein physically interacts with Sp7 protein. We identified that runt homology domain (RHD) of Runx2 protein is involved in physical association with Sp7. Functional consequences of Runx2-Sp7 physical interaction was then assessed by promoter-reporter assays. We selected promoters of osteocalcin (OC), a marker of mature osteoblast and fibroblast growth factor 3 (FGF3), a signaling molecule that determine the fate of embryonic ecto-mesenchyme. Runx2 and Sp7 stimulate OC-promoter activity by 3-folds in epithelial cells. However, when both proteins were co-expressed, a dose-dependent synergistic activation of 22-folds was noted. Similar pattern of synergistic activation of OC-promoter was noted in mesenchymal cell. FGF3 promoter was activated by 25 - and 30-folds with Runx2 and Sp7 respectively. Again a dose-dependent synergistic activation of 130-folds was evident when Runx2 and Sp7 were co-expressed in epithelial cells. Synergistic activation of FGF3 promoter was also noted in mesenchymal cells. Together, our data demonstrated that Runx2-Sp7 molecular complex functionally cooperate for maximal induction of cell-phenotype-restricted genes.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica , Osteoblastos/citologia , Osteocalcina/metabolismo , Osteogênese/fisiologia , Fatores de Transcrição/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Humanos , Ligação Proteica , Fator de Transcrição Sp7
8.
Connect Tissue Res ; 55 Suppl 1: 88-91, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25158188

RESUMO

Tooth formation is a multifaceted process involving numerous interactions between oral epithelium and neural crest derived ecto-mesenchyme from morphogenesis to cyto-differentiation. The precise molecular regulator that drives the cyto-differentiation and dynamic cross-talk between the two cell types has yet to be fully understood. Runx2 along with its downstream target Sp7 are essential transcription factors for development of the mineralizing cell types. Global knockout of the Runx2 gene results in an arrest of tooth morphogenesis at the late bud stage. Like Runx2, Sp7-null mutants exhibit peri-natal lethality and are completely devoid of alveolar bone. However, the role of Sp7 in tooth development remains elusive. Here, we report the effects of Sp7 deletion on tooth formation. Surprisingly, tooth morphogenesis progresses normally until the mid bell stage in Sp7-homozygous mutants. Incisors and multi-cusped first and second molars were noted in both littermates. Thus, formation of alveolar bone is not a prerequisite for tooth morphogenesis. Tooth organs of Sp7-null however, were significantly smaller in size when compared to WT. Differentiation of both ameloblasts and odontoblasts was disrupted in Sp7-null mice. Only premature and disorganized ameloblasts and odontoblasts were noted in mutant mice. These data indicate that Sp7 is not required for tooth morphogenesis but is obligatory for the functional maturation of both ameloblasts and odontoblasts.


Assuntos
Morfogênese/genética , Odontoblastos/citologia , Odontogênese/genética , Dente/metabolismo , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dente Molar/crescimento & desenvolvimento , Morfogênese/fisiologia , Fator de Transcrição Sp7 , Dente/embriologia
9.
Bone ; 181: 117014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38218304

RESUMO

Deletion of Runx2 gene in proliferating chondrocytes results in complete failure of endochondral ossification and perinatal lethality. We reported recently that mice with Runx2 deletion specifically in hypertrophic chondrocytes (HCs) using the Col10a1-Cre transgene survive and exhibit enlarged growth plates due to decreased HC apoptosis and cartilage resorption. Bulk of chondrogenesis occurs postnatally, however, the role of Runx2 in HCs during postnatal chondrogenesis is unknown. Despite limb dwarfism, adult homozygous (Runx2HC/HC) mice showed a significant increase in length of growth plate and articular cartilage. Consistent with doubling of the hypertrophic zone, collagen type X expression was increased in Runx2HC/HC mice. In sharp contrast, expression of metalloproteinases and aggrecanases were markedly decreased. Impaired cartilage degradation was evident by the retention of significant amount of safranin-O positive cartilage. Histomorphometry and µCT uncovered increased trabecular bone mass with a significant increase in BV/TV ratio, trabecular number, thickness, and a decrease in trabecular space in Runx2HC/HC mice. To identify if this is due to increased bone synthesis, expression of osteoblast differentiation markers was evaluated and found to be comparable amongst littermates. Histomorphometry confirmed similar number of osteoblasts in the littermates. Furthermore, dynamic bone synthesis showed no differences in mineral apposition or bone formation rates. Surprisingly, three-point-bending test revealed Runx2HC/HC bones to be structurally less strong. Interestingly, both the number and surface of osteoclasts were markedly reduced in Runx2HC/HC littermates. Rankl and IL-17a ligands that promote osteoclast differentiation were markedly reduced in Runx2HC/HC mice. Bone marrow cultures were performed to independently establish Runx2 and hypertrophic chondrocytes role in osteoclast development. The culture from the Runx2HC/HC mice formed significantly fewer and smaller osteoclasts. The expression of mature osteoclast markers, Ctsk and Mmp9, were significantly reduced in the cultures from Runx2HC/HC mice. Thus, Runx2 functions extend beyond embryonic development and chondrocyte hypertrophy by regulating cartilage degradation, osteoclast differentiation, and bone resorption during postnatal endochondral ossification.


Assuntos
Reabsorção Óssea , Condrócitos , Animais , Camundongos , Condrócitos/metabolismo , Osteoclastos/metabolismo , Cartilagem/metabolismo , Osteogênese/fisiologia , Reabsorção Óssea/metabolismo , Hipertrofia , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo
10.
J Cell Biochem ; 114(11): 2569-76, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23744730

RESUMO

One of the most frequent chromosomal translocation found in patients with acute myeloid leukemia (AML) is the t(8;21). This translocation involves the RUNX1 and ETO genes. The breakpoints regions for t(8;21) are located at intron 5 and intron 1 of the RUNX1 and ETO gene respectively. To date, no homologous sequences have been found in these regions to explain their recombination. The breakpoint regions of RUNX1 gene are characterized by the presence of DNasaI hypersensitive sites and topoisomerase II cleavage sites, but no information exists about complementary regions of ETO gene. Here, we report analysis of chromatin structure of ETO breakpoint regions. Chromatin immunoprecipitation (ChIP) were performed with antibodies specific to acetylated histone H3, H4, and total histone H1. Nucleosomal distribution at the ETO locus was evaluated by determining total levels of histone H3. Our data show that in myeloid cells, the breakpoint regions at the ETO gene are enriched in hyperacetylated histone H3 compared to a control region of similar size where no translocations have been described. Moreover, acetylated H4 associates with both the whole ETO breakpoint regions as well as the control intron. Interestingly, we observed no H1 association either at the breakpoint regions or the control region of the ETO gene. Our data indicate that a common chromatin structure enriched in acetylated histones is present in breakpoint regions involved in formation of (8;21) leukemic translocation.


Assuntos
Cromossomos Humanos Par 21/metabolismo , Cromossomos Humanos Par 8/metabolismo , Histonas/metabolismo , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Translocação Genética/fisiologia , Acetilação , Imunoprecipitação da Cromatina , Cromossomos Humanos Par 21/genética , Cromossomos Humanos Par 8/genética , Células HL-60 , Humanos , Proteínas Proto-Oncogênicas/metabolismo , Proteína 1 Parceira de Translocação de RUNX1 , Fatores de Transcrição/metabolismo , Translocação Genética/genética
11.
Nature ; 445(7126): 442-6, 2007 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-17251981

RESUMO

Regulation of ribosomal RNA genes is a fundamental process that supports the growth of cells and is tightly coupled with cell differentiation. Although rRNA transcriptional control by RNA polymerase I (Pol I) and associated factors is well studied, the lineage-specific mechanisms governing rRNA expression remain elusive. Runt-related transcription factors Runx1, Runx2 and Runx3 establish and maintain cell identity, and convey phenotypic information through successive cell divisions for regulatory events that determine cell cycle progression or exit in progeny cells. Here we establish that mammalian Runx2 not only controls lineage commitment and cell proliferation by regulating genes transcribed by RNA Pol II, but also acts as a repressor of RNA Pol I mediated rRNA synthesis. Within the condensed mitotic chromosomes we find that Runx2 is retained in large discrete foci at nucleolar organizing regions where rRNA genes reside. These Runx2 chromosomal foci are associated with open chromatin, co-localize with the RNA Pol I transcription factor UBF1, and undergo transition into nucleoli at sites of rRNA synthesis during interphase. Ribosomal RNA transcription and protein synthesis are enhanced by Runx2 deficiency that results from gene ablation or RNA interference, whereas induction of Runx2 specifically and directly represses rDNA promoter activity. Runx2 forms complexes containing the RNA Pol I transcription factors UBF1 and SL1, co-occupies the rRNA gene promoter with these factors in vivo, and affects local chromatin histone modifications at rDNA regulatory regions. Thus Runx2 is a critical mechanistic link between cell fate, proliferation and growth control. Our results suggest that lineage-specific control of ribosomal biogenesis may be a fundamental function of transcription factors that govern cell fate.


Assuntos
Linhagem da Célula , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Genes de RNAr/genética , Mitose , Transcrição Gênica , Animais , Sequência de Bases , Cromátides/genética , Cromátides/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/deficiência , DNA Ribossômico/genética , Humanos , Interfase , Metáfase , Camundongos , Mitose/genética , Modelos Biológicos , Complexos Multienzimáticos/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/metabolismo , RNA Ribossômico/biossíntese , Proteínas Repressoras/metabolismo , Transcrição Gênica/genética
12.
Nat Genet ; 32(4): 639-44, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12434156

RESUMO

Runx2 (runt-related transcription factor 2, also known as Cbfa1, Osf2 and AML3) is essential for bone development in mice, and mutations in RUNX2 are found in 65-80% of individuals with cleidocranial dysplasia. Although all Runx family members can interact with Cbfbeta (core-binding factor b, encoded by Cbfb), a role for Cbfbeta in bone development has not been demonstrated owing to lethality in Cbfb(-/-) mouse embryos at 12.5 days post coitum (d.p.c.) from hemorrhages and lack of definitive hematopoiesis. Using a 'knock-in' strategy, we generated mouse embryonic stem (ES) cells that express Cbfb fused in-frame to a cDNA encoding green fluorescent protein (GFP). Cbfb(+/GFP) mice had normal life spans and appeared normal, but Cbfb(GFP/GFP) pups died within the first day after birth. The Cbfb(GFP/GFP) mice exhibited a delay in endochondral and intramembranous ossification as well as in chondrocyte differentiation, similar to but less severe than delays observed in Runx2(-/-) mice. We demonstrate that Cbfbeta is expressed in developing bone and forms a functional interaction with Runx2, and that Cbfb(GFP) is a hypomorphic allele. The fusion allele maintains sufficient function in hematopoietic cells to bypass the early embryonic lethality, and identifies a new role for Cbfb in bone development. Our findings raise the possibility that mutations in CBFB may be responsible for some cases of cleidocranial dysplasia that are not linked to mutations in RUNX2.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Neoplasias , Osteogênese , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Alelos , Animais , Diferenciação Celular , Células Cultivadas , Condrócitos/citologia , Condrócitos/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core , Subunidades alfa de Fatores de Ligação ao Core , Subunidade beta de Fator de Ligação ao Core , Fatores de Ligação ao Core , Proteínas de Ligação a DNA/genética , Desenvolvimento Embrionário e Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Proteínas de Fluorescência Verde , Células HeLa , Homozigoto , Humanos , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Fenótipo , Células-Tronco Pluripotentes/fisiologia , Proteínas Recombinantes de Fusão/fisiologia , Fator de Transcrição AP-2 , Fatores de Transcrição/genética , Células Tumorais Cultivadas
13.
Hum Mol Genet ; 19(6): 1048-57, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20035012

RESUMO

Runx1 is a key hematopoietic transcription factor required for definitive hematopoiesis and is a frequent target of leukemia-related chromosomal translocations. The resulting fusion proteins, while retaining DNA binding activity, display loss of subnuclear targeting and associated transactivation functions encoded by the C-terminus of the protein. To define the precise contribution of the Runx1 C-terminus in development and leukemia, we created a knock-in mouse with a C-terminal truncation by introducing a single nucleic acid substitution in the native Runx1 locus. This mutation (Runx1(Q307X)) models genetic lesions observed in patients with leukemia and myeloproliferative disorders. The Runx1(Q307X) homozygous mouse exhibits embryonic lethality at E12.5 due to central nervous system hemorrhages and a complete lack of hematopoietic stem cell function. While able to bind DNA, Runx1(Q307X) is unable to activate target genes, resulting in deregulation of various hematopoietic markers. Thus, we demonstrate that the subnuclear targeting and transcriptional regulatory activities of the Runx1 C-terminus are critical for hematopoietic development. We propose that compromising the C-terminal functions of Runx1 is a common mechanism for the pathological consequences of a variety of somatic mutations and Runx1-related leukemic fusion proteins observed in human patients.


Assuntos
Núcleo Celular/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/química , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Hematopoese , Ativação Transcricional/genética , Animais , Linhagem Celular Tumoral , Cruzamentos Genéticos , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Heterozigoto , Humanos , Masculino , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Relação Estrutura-Atividade
14.
Front Immunol ; 13: 1114732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36861066

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2022.906649.].

15.
Front Immunol ; 13: 906649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189270

RESUMO

The early B cell protein λ5 is an essential component of the surrogate light chain and the preB cell receptor (preBCR), which is critical for optimal B cell development. To investigate the effect of λ5 and/or B cells on bone acquisition over time, we developed a panel of JH -/- , λ5-/-, JH -/- λ5-/-, and wild-type (WT) BALB/c mice and then studied postnatal bone development and aging in these mice at one, six, twelve, and twenty-two months of age. The trabecular bone volume over total volume (BV/TV) in JH -/- mice was similar to WT mice at all ages. In contrast, at six months of age and thereafter, λ5-/- and JH -/- λ5-/- mice demonstrated a severe decrease in trabecular bone mass. Surprisingly, bone mass in six-month-old λ5-/- and JH -/- λ5-/- mice was similar to or even lower than in aged (twenty-two-months) WT mice, suggesting accelerated skeletal aging. The postnatal development and the acquisition of cortical bone mass in JH -/- λ5-/- mice were generally comparable to WT. However, JH -/- λ5-/- mice showed a significant decrease in cortical BV/TV at six- and twelve months of age. To examine the contribution of λ5 and B cells to postnatal bone synthesis, we separately transplanted whole bone marrow cells from JH -/- λ5-/- and WT mice into irradiated JH -/- λ5-/- and WT recipients. WT recipients of JH -/- λ5-/- marrow cells failed to show acquisition of trabecular bone mass, whereas transplanting WT marrow cells into JH -/- λ5-/- recipients led to the recovery of trabecular bone mass. Transfer of WT marrow cells into JH -/- λ5-/- mice promoted synthesis of new cortical and trabecular bone. Our findings indicate that λ5 plays a major role in preserving bone mass during postnatal development and skeletal aging which is distinct from its role in B cell development. The absence of both λ5 and B cells in JH -/- λ5-/- mice leads to delayed acquisition of cortical bone during postnatal development. Dissecting the mechanism(s) by which λ5 regulates bone homeostasis may provide new avenues for the treatment of age-related loss of bone mass and osteoporosis.


Assuntos
Linfócitos B , Receptores de Células Precursoras de Linfócitos B , Envelhecimento , Animais , Linfócitos B/metabolismo , Densidade Óssea , Cadeias Leves Substitutas da Imunoglobulina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Células Precursoras de Linfócitos B/metabolismo
16.
Mol Cancer Ther ; 21(2): 347-358, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34907087

RESUMO

Multiple myeloma is a plasma cell malignancy that thrives in the bone marrow (BM). The proteasome inhibitor bortezomib is one of the most effective first-line chemotherapeutic drugs for multiple myeloma; however, 15% to 20% of high-risk patients do not respond to or become resistant to this drug and the mechanisms of chemoresistance remain unclear. We previously demonstrated that multiple myeloma cells inhibit Runt-related transcription factor 2 (Runx2) in pre- and immature osteoblasts (OB), and that this OB-Runx2 deficiency induces a cytokine-rich and immunosuppressive microenvironment in the BM. In the current study, we assessed the impact of OB-Runx2 deficiency on the outcome of bortezomib treatment using OB-Runx2+/+ and OB-Runx2-/- mouse models of multiple myeloma. In vitro and in vivo experiments revealed that OB-Runx2 deficiency induces multiple myeloma cell resistance to bortezomib via the upregulation of immunosuppressive myeloid-derived suppressor cells (MDSCs), downregulation of cytotoxic T cells, and activation of TGFß1 in the BM. In multiple myeloma tumor-bearing OB-Runx2-/- mice, treatment with SRI31277, an antagonist of thrombospondin-1 (TSP-1)-mediated TGFß1 activation, reversed the BM immunosuppression and significantly reduced tumor burden. Furthermore, treatment with SRI31277 combined with bortezomib alleviated multiple myeloma cell resistance to bortezomib-induced apoptosis caused by OB-Runx2 deficiency in cocultured cells and produced a synergistic effect on tumor burden in OB-Runx2-/- mice. Depletion of MDSCs by 5-fluorouracil or gemcitabine similarly reversed the immunosuppressive effects and bortezomib resistance induced by OB-Runx2 deficiency in tumor-bearing mice, indicating the importance of the immune environment for drug resistance and suggesting new strategies to overcome bortezomib resistance in the treatment of multiple myeloma.


Assuntos
Medula Óssea/metabolismo , Bortezomib/uso terapêutico , Subunidade alfa 1 de Fator de Ligação ao Core/deficiência , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Osteoblastos/metabolismo , Trombospondina 1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Bortezomib/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Mieloma Múltiplo/patologia
17.
Hum Mol Genet ; 18(3): 556-68, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19028669

RESUMO

Cleidocranial dysplasia (CCD) in humans is an autosomal-dominant skeletal disease that results from mutations in the bone-specific transcription factor RUNX2 (CBFA1/AML3). However, distinct RUNX2 mutations in CCD do not correlate with the severity of the disease. Here we generated a new mouse model with a hypomorphic Runx2 mutant allele (Runx2(neo7)), in which only part of the transcript is processed to full-length (wild-type) Runx2 mRNA. Homozygous Runx2(neo7/neo7) mice express a reduced level of wild-type Runx2 mRNA (55-70%) and protein. This mouse model allowed us to establish the minimal requirement of functional Runx2 for normal bone development. Runx2(neo7/neo7) mice have grossly normal skeletons with no abnormalities observed in the growth plate, but do exhibit developmental defects in calvaria and clavicles that persist through post-natal growth. Clavicle defects are caused by disrupted endochondral bone formation during embryogenesis. These hypomorphic mice have altered calvarial bone volume, as observed by histology and microCT imaging, and decreased expression of osteoblast marker genes. The bone phenotype of the heterozygous mice, which have 79-84% of wild-type Runx2 mRNA, is normal. These results show there is a critical gene dosage requirement of functional Runx2 for the formation of intramembranous bone tissues during embryogenesis. A decrease to 70% of wild-type Runx2 levels results in the CCD syndrome, whereas levels >79% produce a normal skeleton. Our findings suggest that the range of bone phenotypes in CCD patients is attributable to quantitative reduction in the functional activity of RUNX2.


Assuntos
Displasia Cleidocraniana/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Animais , Desenvolvimento Ósseo , Células Cultivadas , Clavícula/anormalidades , Clavícula/embriologia , Clavícula/crescimento & desenvolvimento , Clavícula/metabolismo , Displasia Cleidocraniana/embriologia , Displasia Cleidocraniana/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Feminino , Lâmina de Crescimento/crescimento & desenvolvimento , Lâmina de Crescimento/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoblastos/metabolismo , Fenótipo , Crânio/anormalidades , Crânio/embriologia , Crânio/crescimento & desenvolvimento , Crânio/metabolismo
18.
Cells Tissues Organs ; 194(2-4): 161-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21597273

RESUMO

Coordinated activities of multiple mesenchymal cell types contribute to the development of the mammalian skeleton formed through endochondral ossification. Synthesis of a cartilage template by chondrocytes is an obligatory step for the generation of skeletal elements during endochondral ossification. Gene ablation studies have established that Runx2 is an essential transcription factor for bone formation and the differentiation of skeletal cells. However, global gene deletion has failed to discern the tissue- and cell type-specific roles of Runx2. We generated floxed mice to elucidate the Runx2 regulatory control distinctive to cartilage tissue during bone development. Exon 8 of the Runx2 gene was selectively deleted in developing chondrocytes by utilizing Col2a-Cre mice. Cell- and tissue-specific gene recombination was confirmed by ß-gal activity in R26R mice. The chondrocyte-specific loss of Runx2 caused failure of endochondral ossification, impaired craniofacial development, dwarfism, and perinatal lethality. Radiographic imaging and histochemical approaches were used to characterize the skeletal phenotype. We conclude that regulatory control of Runx2 in chondrocytes is essential for endochondral ossification, and it is independent of the role of Runx2 in osteoblasts.


Assuntos
Desenvolvimento Ósseo , Condrócitos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular , Condrócitos/citologia , Subunidade alfa 1 de Fator de Ligação ao Core/deficiência , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Deleção de Genes , Camundongos , Especificidade de Órgãos , Osteogênese , Análise de Sobrevida
19.
Cells Tissues Organs ; 194(2-4): 232-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21597275

RESUMO

Glucose intolerance seen in metabolic disorders, such as type II diabetes, is commonly associated with improper execution of the insulin signaling pathway, as well as an imbalance of bone and fat tissues, such that a gain in adipose tissue occurs at the expense of bone loss. Fat-producing adipocytes and bone-forming osteoblasts stem from a common mesenchymal progenitor cell. Runx2 positively regulates the commitment of the mesenchymal cell toward osteogenesis, but its effects on energy homeostasis and the insulin signaling pathway are unknown. To investigate the connection, focused microarray profiling of genes associated with the insulin signaling pathway was performed on calvarial cells from Runx2-null embryonic mice and 3T3-L1 preadipocytes treated with control and insulin-containing media. The microarray showed that addition of insulin resulted in a robust induction of genes (>95%) in 3T3-L1 cells. Surprisingly, Runx2-null cells cultured in control media were at an elevated state of energy metabolism and addition of insulin resulted in a marked suppression of genes required for insulin signaling. Clustering analysis revealed that the suppression occurred at all stages of the insulin pathway, from the receptors and transducers to nuclear effectors and target genes. Taken together, these results demonstrate that Runx2 is central for transduction and execution of the insulin regulatory signal. In conclusion, Runx2 actively regulates the gene network required for glucose metabolism and energy homeostasis in mesenchymal cells.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Metabolismo Energético/genética , Redes Reguladoras de Genes , Homeostase/genética , Insulina/metabolismo , Transdução de Sinais/genética , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/deficiência , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Insulina/farmacologia , Mesoderma/citologia , Mesoderma/efeitos dos fármacos , Mesoderma/metabolismo , Camundongos , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Supressão Genética/efeitos dos fármacos
20.
Matrix Biol Plus ; 12: 100088, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34805821

RESUMO

The RUNX2 transcription factor is a key regulator for the development of cartilage and bone. Global or resting chondrocyte-specific deletion of the Runx2 gene results in failure of chondrocyte hypertrophy, endochondral ossification, and perinatal lethality. The terminally mature hypertrophic chondrocyte regulates critical steps of endochondral ossification. Importantly, expression of the Runx2 gene starts in the resting chondrocyte and increases progressively, reaching the maximum level in hypertrophic chondrocytes. However, the RUNX2 role after chondrocyte hypertrophy remains unknown. To answer this question, we deleted the Runx2 gene specifically in hypertrophic chondrocytes using the Col10-Cre line. Mice lacking the Runx2 gene in hypertrophic chondrocytes (Runx2HC/HC ) survive but exhibit limb dwarfism. Interestingly, the length of the hypertrophic chondrocyte zone is doubled in the growth plate of Runx2HC/HC mice. Expression of pro-apoptotic Bax decreased significantly while anti-apoptotic Bcl2 remains unchanged leading to a four-fold increase in the Bcl2/Bax ratio in mutant mice. In line with this, a significant reduction in apoptosis of Runx2HC/HC hypertrophic chondrocyte is noted. A large amount of cartilage matrix is present in the long bones that extend toward the diaphyseal region of Runx2HC/HC mice. This is not due to enhanced synthesis of the cartilage matrix as the expression of both collagen type 2 and aggrecan were comparable among Runx2HC/HC and WT littermates. Our qPCR analysis demonstrates the increased amount of cartilage matrix is due to impaired expression of cartilage degrading enzymes such as metalloproteinase and aggrecanase as well as tissue inhibitor of metalloproteinases. Moreover, a significant decrease of TRAP positive chondroclasts was noted along the cartilage islands in Runx2HC/HC mice. Consistently, qPCR data showed an 81% reduction in the Rankl/Opg ratio in Runx2HC/HC littermates, which is inhibitory for chondroclast differentiation. Finally, we assess if increase cartilage matrix in Runx2HC/HC mice serves as a template for bone and mineral deposition using micro-CT and Von Kossa. The mutant mice exhibit a significant increase in trabecular bone mass compared to littermates. In summary, our findings have uncovered a novel role of Runx2 in apoptosis of hypertrophic chondrocytes and degradation of cartilage matrix during endochondral ossification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA