RESUMO
The co-occurrence of sensorineural hearing loss and male infertility has been reported in several instances, suggesting potential shared genetic underpinnings. One such example is the contiguous gene deletion of CATSPER2 and STRC genes, previously associated with deafness-infertility syndrome (DIS) in males. Fifteen males with both hearing loss and infertility from southern India after exclusion for the DIS contiguous gene deletion and the FOXI1 gene mutations are subjected to exome sequencing. This resolves the genetic etiology in four probands for both the phenotypes; In the remaining 11 probands, two each conclusively accounted for deafness and male infertility etiologies. Genetic heterogeneity is well reflected in both phenotypes. Four recessive (TRIOBP, SLC26A4, GJB2, COL4A3) and one dominant (SOX10) for the deafness; six recessive genes (LRGUK, DNAH9, ARMC4, DNAH2, RSPH6A, and ACE) for male infertility can be conclusively ascribed. LRGUK and RSPH6A genes are implicated earlier only in mice models, while the ARMC4 gene is implicated in chronic destructive airway diseases due to primary ciliary dyskinesia. This study would be the first to document the role of these genes in the male infertility phenotype in humans. The result suggests that deafness and infertility are independent events and do not segregate together among the probands.
RESUMO
Stuttering is a childhood-onset fluency disorder, intertwined with physiological, emotional, and anxiety factors. The present study was designed to evaluate the recurrence of the reported mutations among three previously implicated (GNPTAB, GNPTG, NAGPA) candidate genes, in persons with stuttering from south India. Mutation screening was performed among 64 probands on 12 specific exons, by Sanger sequencing. A total of 12 variants were identified, which included five nonsynonymous, five synonymous, and two noncoding variants. Three unrelated probands harbored heterozygous missense variants at conserved coding positions across species (p. Glu1200Lys in GNPTAB, p. Ile268Leu in GNPTG and p. Arg44Pro in NAGPA). Of these, only one variant (p. Glu1200Lys in GNPTAB) cosegregated with the affected status while p. Ile268Leu in GNPTG gene was found to be a rare de novo variant. Although this study identified some previously reported variants that have been claimed to have a role in stuttering, we confirmed only one of these to be a likely causal de novo variant (p.Ile268Leu) in the GNPTG gene at an allele frequency of 0.8% (1/128) in the families with stuttering.