Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Angew Chem Int Ed Engl ; 63(27): e202401020, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38632078

RESUMO

Singlet carbenes are not always isolable and often even elude direct detection. When they escape observation, their formation can sometimes be evidenced by in situ trapping experiments. However, is carbene-like reactivity genuine evidence of carbene formation? Herein, using the first example of a spectroscopically characterized cyclic (amino)(aryl)carbene (CAArC), we cast doubt on the most common carbene trapping reactions as sufficient proof of carbene formation.

2.
J Am Chem Soc ; 145(30): 16297-16304, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37487009

RESUMO

The achievement of sufficient substrate-metal catalyst affinity is a fundamental challenge for the development of synthetically useful C-H activation reactions of weakly coordinating native substrates. While hydrogen bonding has been harnessed to bias site selectivity in existing C(sp2)-H activation reactions, the potential for designing catalysts with hydrogen bond donors (HBDs) to enhance catalyst-substrate affinity and, thereby, facilitate otherwise unreactive C(sp3)-H activation remains to be demonstrated. Herein, we report the discovery of a ligand scaffold containing a remote amide motif that can form a favorable meta-macrocyclic hydrogen bonding interaction with the aliphatic acid substrate. The utility of this ligand scaffold is demonstrated through the development of an unprecedented C(sp3)-H bromination of α-tertiary and α-quaternary free carboxylic acids, which proceeds in exceedingly high mono-selectivity. The geometric relationship between the NHAc hydrogen bond donor and the coordinating quinoline ligand is crucial for forming the meta-macrocyclophane-like hydrogen bonding interaction, which provides a guideline for the future design of catalysts employing secondary interactions.

3.
Angew Chem Int Ed Engl ; 62(33): e202305404, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37221132

RESUMO

Organic circularly polarized luminescence (CPL)-active molecular emitters featuring dynamic propeller-like luminophores were prepared in one step from cyclic(alkyl)(amino) carbenes (CAACs). These molecules exhibit through-space arene-arene π-delocalization and rapid intramolecular inter-system crossing (ISC) in line with their helical character.

4.
J Org Chem ; 87(5): 3511-3518, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35133152

RESUMO

Using readily available preallylated aldehydes, we report a simple and divergent synthesis of cyclic (alkyl)(amino)carbene (CAAC) iminium precursors. Using a combination of crystallographic data and steric maps, we further elaborate on the specific steric properties of CAAC ligands with respect to state-of-the-art phosphine and carbene ligands.


Assuntos
Metano , Ligantes , Metano/análogos & derivados , Metano/química
5.
Chem Rev ; 120(9): 4141-4168, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32239922

RESUMO

Cyclic (alkyl)- and (aryl)-(amino)carbenes (CAACs and CAArCs) are stronger σ-donors and π-acceptors than imidazol-2-ylidenes and imidazolidin-2-ylidenes, the well-known N-heterocyclic carbenes (NHCs). Consequently, they form strong bonds with coinage metals and stabilize both low and high oxidation states. This Review shows that CAACs and CAArCs have allowed for the isolation of copper and gold complexes that were believed to be only transient intermediates. This has not only allowed for a better understanding of the mechanism of known processes but has also led to the development of novel coinage metal-catalyzed reactions. In addition to their role in homogeneous catalysis, CAAC and CAArC coinage metal complexes have recently found applications in medicinal chemistry, as well as in materials science. When possible, the performance of CAAC and CAArC ligands are compared with those of classical NHCs.

6.
Angew Chem Int Ed Engl ; 60(52): 27253-27257, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34729888

RESUMO

A simple experimental procedure for scaling carbene Brønsted basicity is described. The results highlight the strong basicity of pyrazol-4-ylidenes, a type of mesoionic carbene, also named cyclic-bentallenes (CBA). They are more basic (pKaH >42.7 in acetonitrile) than the popular proazaphosphatrane Verkade bases, and even the Schwesinger phosphazene superbase P4 (t Bu). The basicity of these compounds can readily be tuned, and they are accessible in multigram quantities. These results open new avenues for carbon centered superbases.

7.
Angew Chem Int Ed Engl ; 60(36): 19871-19878, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34159696

RESUMO

Regioselective hydrofunctionalization of alkynes represents a straightforward route to access alkenyl boronate and silane building blocks. In previously reported catalytic systems, high selectivity is achieved with a limited scope of substrates and/or reagents, with general solutions lacking. Herein, we describe a selective copper-catalyzed Markovnikov hydrofunctionalization of terminal alkynes that is facilitated by strongly donating cyclic (alkyl)(amino)carbene (CAAC) ligands. Using this method, both alkyl- and aryl-substituted alkynes are coupled with a variety of boryl and silyl reagents with high α-selectivity. The reaction is scalable, and the products are versatile intermediates that can participate in various downstream transformations. Preliminary mechanistic experiments shed light on the role of CAAC ligands in this process.


Assuntos
Alcenos/síntese química , Alcinos/química , Cobre/química , Metano/análogos & derivados , Alcenos/química , Catálise , Ligantes , Metano/química , Estrutura Molecular
8.
J Am Chem Soc ; 142(38): 16479-16485, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32872772

RESUMO

The precise preparation of monodisperse nanomaterials is among the most fundamental tasks in inorganic synthesis and materials science. Achieving this goal by galvanic exchange is hardly predictable and often results in major structural changes and polydisperse mixtures. Taking advantage of the enhanced stability imparted by ambiphilic carbenes, we report and rationalize the absolute templating, the complete exchange of metals in a template, of group 11 clusters across the entire coinage metal family by means of galvanic exchange. We further delineate that these species provide a molecular model for better understanding the reduction of CO2 at M(111) coinage metal surfaces.

9.
J Am Chem Soc ; 142(43): 18336-18340, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33054191

RESUMO

Many organic and main-group compounds, usually acids or bases, can accelerate chemical reactions when used in substoichiometric quantities, a process known as organocatalysis. In marked contrast, very few of these compounds are able to activate carbon monoxide, and until now, none of them could catalyze its chemical transformation, a classical task for transition metals. Herein we report that a stable singlet ambiphilic carbene activates CO and catalytically promotes the carbonylation of an o-quinone into a cyclic carbonate. These findings pave the way for the discovery of metal-free catalyzed carbonylation reactions.

10.
J Am Chem Soc ; 142(47): 19895-19901, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33185429

RESUMO

An expedient access to the first optically pure ruthenium complexes containing C1-symmetric cyclic (alkyl)(amino)carbene ligands is reported. They demonstrate excellent catalytic performances in asymmetric olefin metathesis with high enantioselectivities (up to 92% ee). Preliminary mechanistic insights provided by density functional theory models highlight the origin of the enantioselectivity.

11.
Angew Chem Int Ed Engl ; 59(49): 22028-22033, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32822513

RESUMO

Selenium NMR has become a standard tool for scaling the π-accepting character of carbenes. Herein, we highlight that non-classical hydrogen bonding (NCHB), likely resulting from hyperconjugation, can play a significant role in the carbene-selenium 77 Se NMR chemical shift, thus triggering a non-linear behavior of the Se-Scale.

12.
J Am Chem Soc ; 141(42): 16726-16733, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31565934

RESUMO

Chiral acetyl-protected aminoalkyl quinoline (APAQ) ligands were recently discovered to afford highly active and enantioselective palladium catalysts for the arylation of methylene C(sp3)-H bonds, and herein, we investigate the origins of these heightened properties. Unprecedented amide-bridged APAQ-Pd dimers were predicted by density functional theory (DFT) calculations and were confirmed by single-crystal X-ray diffraction studies. Comparison of structural features between APAQ-Pd complexes and an acetyl-protected aminoethylpyridine APAPy-Pd complex strongly suggests that the high activity of the former originates from the presence of the quinoline ring, which slows the formation of the off-cycle palladium dimer. Furthermore, steric topographic maps for a representative subset of monomeric, monoligated palladium complexes allowed us to draw a unique parallel between the three-dimensional structures of these catalysts and their reported asymmetric induction in ß-C(sp3)-H bond arylation reactions. Finally, cooperative noncovalent interactions present between the APAQ ligand and the substrate were identified as a crucial factor for imparting selectivity between chemically equivalent methylenic C(sp3)-H bonds prior to concerted metalation deprotonation activation.

13.
J Am Chem Soc ; 141(2): 1109-1117, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30561990

RESUMO

The oxidation of the Breslow intermediate resulting from the addition of an N-heterocyclic carbene (NHC) to benzaldehyde triggers a fast deprotonation, followed by a second electron transfer, directly affording the corresponding acylium at E > -0.8 V (versus Fc/Fc+). Similarly, the oxidation of the cinnamaldehyde analogue occurs at an even higher potential and is not a reversible electrochemical process. As a whole, and contrary to previous beliefs, it is demonstrated that Breslow intermediates, which are the key intermediates in NHC-catalyzed transformations of aldehydes, cannot undergo a single electron transfer (SET) with mild oxidants ( E < -1.0 V). Moreover, the corresponding enol radical cations are ruled out as relevant intermediates. It is proposed that oxidative NHC-catalyzed radical transformations of enals proceed either through SET from the corresponding electron-rich enolate or through coupled electron-proton transfer from the enol, in any case generating neutral capto-dative radicals. Relevant electrochemical surrogates of these paramagnetic species have been isolated.

14.
J Am Chem Soc ; 141(25): 9823-9826, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31180660

RESUMO

It has been previously demonstrated that stable singlet electrophilic carbenes can behave as metal surrogates in the activation of strong E-H bonds (E = H, B, N, Si, P), but it was believed that these activations only proceed through an irreversible activation barrier. Herein we show that, as is the case with transition metals, the steric environment can be used to promote reductive elimination at carbon centers.

15.
J Am Chem Soc ; 141(21): 8616-8626, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31062972

RESUMO

A systematic study is presented on the physical and photophysical properties of isoelectronic and isostructural Cu, Ag, and Au complexes with a common amide (N-carbazolyl) and two different carbene ligands (i.e., CAAC = (5 R,6 S)-2-(2,6-diisopropylphenyl)-6-isopropyl-3,3,9-trimethyl-2-azaspiro[4.5]decan-2-ylidene, MAC = 1,3-bis(2,6-diisopropylphenyl)-5,5-dimethyl-4-keto-tetrahydropyridylidene). The crystal structures of the (carbene)M(I)(N-carbazolyl) (MCAAC) and (MAC)M(I)(N-carbazolyl) (MMAC) complexes show coplanar carbene and carbzole ligands and C-M-N bond angles of ∼180°. The electrochemical properties and energies for charge transfer (CT) absorption and emission compounds are not significantly affected by the choice of metal ion. All six of the (carbene)M(Cz) complexes examined here display high photoluminescence quantum yields of 0.8-1.0. The compounds have short emission lifetimes (τ = 0.33-2.8 µs) that fall in the order Ag < Au < Cu, with the lifetimes of (carbene)Ag(Cz) roughly a factor of 10 shorter than for (carbene)Cu(Cz) complexes. Detailed temperature-dependent photophysical measurements (5-325 K) were carried out to determine the singlet and triplet emission lifetimes (τfl and τph, respectively) and the energy difference between the singlet and triplet excited state, Δ ES1-T1. The τfl values range between 20 and 85 ns, and the τph values are in the 50-200 µs regime. The emission at room temperature is due exclusively to E-type delayed fluorescence or TADF (i.e., T1→ΔS1→S0+hν ). The emission rate at room temperature is fully governed by Δ ES1-T1, with the silver complexes giving Δ ES1-T1 values of 150-180 cm-1 (18-23 meV), whereas the gold and copper complexes give values of 570-590 cm-1 (70-73 meV).

16.
Angew Chem Int Ed Engl ; 58(9): 2875-2878, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30618172

RESUMO

Primary aminoboranes (RNHBR2 ), which are readily available by spontaneous dehydrocoupling of amines and boranes cleanly react at room temperature with aldehydes to give aldimines. The overall transformation from amines to aldimines can be conveniently performed by a sequential one-pot reaction. This synthetic strategy is especially useful for electron poor and bulky amines which are reluctant to react with aldehydes under dehydration conditions. Using a Glorius robustness screen, we show that this methodology is chemoselective, and functional group tolerant. Computational and experimental data support the irreversible formation of the aldimine product in marked contrast with traditional methods.

17.
J Am Chem Soc ; 140(29): 9255-9260, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29954178

RESUMO

Cyclic (alkyl)(amino)carbenes with a six-membered backbone were prepared. Compared to their five-membered analogues, they feature increased % Vbur and enhanced donor and acceptor properties, as evidenced by the observed n → π* transition trailing into the visible region. The high ambiphilic character even allows for the intramolecular insertion of the carbene into an unactivated C(sp3)-H bond. When used as ligands, they outcompete the five-membered analogues in the palladium-mediated α-arylation of ketones with aryl chlorides.

19.
J Am Chem Soc ; 139(23): 7753-7756, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28541687

RESUMO

A straightforward strategy allows for the synthesis of storable bicyclic (alkyl)(amino)carbenes (BICAACs), which feature enhanced σ-donating and π-accepting properties compared to monocyclic (alkyl)(amino)carbenes (CAACs). Due to the bicyclo[2.2.2]octane skeleton, the steric environment around the carbene center is different from that of CAACs and similar to that observed in classical N-heterocyclic carbenes. The different electronic properties of BICAACs as compared to CAACs allow for ligand exchange reactions not only at a metal center, but also at main group elements.

20.
Chemistry ; 23(25): 6206-6212, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28105672

RESUMO

A cyclic and an acyclic di(amino)carbene as well as a cyclic and an acyclic (alkyl)(amino)carbene cleanly react with benzoyl chloride to give the corresponding adducts 1+cyc , 1+acy , 2+cyc , and 2+acy , respectively. The reduction of 1+cyc and 2+cyc derived from cyclic carbenes affords the corresponding radicals 1cyc and 2cyc that are stable at room temperature. In contrast, radicals 1acy and 2acy , derived from acyclic carbenes, cannot be isolated. It is shown that 1acy is as thermodynamically stabilized as its cyclic counterpart 1cyc , but its instability is the result of ß-hydrogens of the nitrogen substituent, along with the enhanced flexibility around C-N bonds, which allow for a H. -migration-elimination process. Radical 2acy is thermodynamically unstable, and undergoes disproportionation into the corresponding iminium 2+acy and enolate 2-acy . This is due to the excessive steric hindrance, which prevents electron-delocalization on the NCCO fragment, and thus, the capto-dative stabilization. This work suggests general guidelines for the design of highly persistent (amino)(carboxy)radicals, especially by emphasizing the key advantage of cyclic patterns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA