Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998914

RESUMO

It has been shown that the nature of the metal precursor and the thermal effects during calcination determine the physicochemical properties of the catalysts and their catalytic activity in the levulinic acid (LA) and 5-hydroxymethylfurfural (HMF) hydrogenation reactions. The endothermic effect during calcination of the inorganic nickel precursor promoted higher metal dispersion and stronger interaction with the alumina surface. In contrast, the exothermic effects during the calcination of organic nickel precursors resulted in smaller metal dispersion and lower interaction with the support surface. A clear relationship was found between the size of the metal crystallites and the yield of LA hydrogenation reaction. The smaller crystallites were more active in the LA hydrogenation reaction. In turn, the size of the metal particles and their nature of interaction with the surface of the alumina influence the hydrogenation pathways of the HMF.

2.
Molecules ; 25(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212838

RESUMO

The influence of the nature of carbon materials used as a support for Ru/C catalysts on levulinic acid hydrogenation with formic acid as a hydrogen source toward gamma-valerolactone was investigated. It has been shown that the physicochemical properties of carbon strongly affect the catalytic activity of Ru catalysts. The relationship between the hydrogen mobility, strength of hydrogen adsorption, and catalytic performance was established. The catalyst possessing the highest number of defects, stimulating metal support interaction, exhibited the highest activity. The effect of the catalyst grain size was also studied. It was shown that the decrease in the grain size resulted in the formation of smaller Ru crystallites on the catalyst surface, which facilitates the activity.


Assuntos
Carbono/química , Hidrogênio/química , Ácidos Levulínicos/química , Rutênio/química , Amônia/química , Dióxido de Carbono/química , Monóxido de Carbono/química , Catálise , Formiatos/química , Hidrogenação , Tamanho da Partícula , Análise Espectral Raman , Temperatura , Difração de Raios X
3.
Materials (Basel) ; 14(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803446

RESUMO

The research was aimed at checking the effect of monoperoxy derivative of epoxy resin (PO) on the possibility of rubber crosslinking and a subsequent adhesion of the modified rubber to silver wires. Three of the commonly industrially used rubbers were selected for the study: styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR) and carboxylated acrylonitrile-butadiene rubber (XNBR), together with the popular, commercially available Epidian 6 epoxy resin, subjected to the functionalization. An improvement in the adhesion of rubbers to silver wires was observed when using the modified resin. In some cases, an improvement in the mechanical properties of the rubber was observed, especially when the resin was used for crosslinking together with dicumyl peroxide (DCP). Crosslinking synergy between dicumyl peroxide and the modified resin could be observed especially in the case of PO applied for peroxide curing of SBR and NBR.

4.
Materials (Basel) ; 14(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800322

RESUMO

This research was aimed at verifying the effect of carboxy-containing peroxy oligomer (CPO) addition on the possibility of rubber crosslinking and a subsequent adhesion of the modified rubber to silver wires. Three commonly industrially used rubbers were selected for the study: styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR) and carboxylated acrylonitrile-butadiene rubber (XNBR), together with carboxy-containing peroxy oligomer (CPO). An improvement in the adhesion of rubbers to silver wires was observed when applying the oligomeric peroxide with functional groups, with no deterioration of mechanical properties of the vulcanizates. Crosslinking synergy between dicumyl peroxide (DCP) and the modifier could hardly be observed. Nevertheless, the studies demonstrated, that to a small extent, even the CPO itself can crosslink NBR and especially XNBR, resulting in a material of notable elasticity and adhesion to silver wires.

5.
ChemSusChem ; 12(3): 639-650, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30350463

RESUMO

Calcium-modified titania supported Ru catalysts were synthesized and evaluated for the hydrogenation of levulinic acid with formic acid as an internal hydrogen source and water as a green solvent. A new elegant photoassisted method was developed for the synthesis of uniform-size and evenly distributed Ru particles on the titania surface. Compared with the counterpart catalysts prepared by classical wet impregnation, enhanced levulinic acid conversion and γ-valerolactone yield were obtained and further improved through modification of the support by introduction of calcium into the titania support. This synthesis approach resulted in a change of the surface and bulk properties of the support, namely a decrease in the anatase crystallite size and the formation of a new calcium titanate phase. As a consequence, the properties of the catalysts were modified, and smaller ruthenium particles that had stronger interactions with the support were obtained. This affected the strength of the CO adsorption on the catalyst surface and facilitated the reaction performance. The optimum size of Ru particles that allowed for most efficient levulinic acid conversion was established.

6.
Environ Sci Pollut Res Int ; 24(34): 26792-26805, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28963641

RESUMO

α, ß, γ, and δ polymorphs of 4.6-4.8 eV wide band gap Ga2O3 photocatalysts were prepared via a soft chemistry route. Their photocatalytic activity under 254 nm UV-C light in the degradation of gaseous toluene was strongly depending on the polymorph phase. α- and ß-Ga2O3 photocatalysts enabled achieving high and stable conversions of toluene with selectivities to CO2 within the 50-90% range, by contrast to conventional TiO2 photocatalysts that fully deactivate very rapidly on stream in similar operating conditions with rather no CO2 production, no matter whether UV-A or UV-C light was used. The highest performances were achieved on the high specific surface area ß-Ga2O3 photocatalyst synthesized by adding polyethylene glycol (PEG) as porogen before precipitation, with stable toluene conversion and mineralization rate into CO2 strongly overcoming those obtained on commercial ß-Ga2O3. They were attributed to favorable physicochemical properties in terms of high specific surface area, small mean crystallite size, good crystallinity, high pore volume with large size mesopore distribution and appropriate surface acidity, and to the possible existence of a double local internal field within Ga3+ units. In the degradation of hydrogen sulfide, PEG-derived ß-Ga2O3 takes advantage from its high specific surface area for storing sulfate, and thus for increasing its resistance to deactivation and the duration at total sulfur removal when compared to other ß-Ga2O3 photocatalysts. So, we illustrated the interest of using high surface area ß-Ga2O3 in environmental photocatalysis for gas-phase depollution applications.


Assuntos
Poluentes Atmosféricos/química , Gálio/análise , Sulfeto de Hidrogênio/química , Fotólise , Tolueno/química , Raios Ultravioleta , Oxirredução
7.
Chem Commun (Camb) ; 50(83): 12450-3, 2014 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24980805

RESUMO

While Ru is a poor hydrogenation catalyst compared to Pt or Pd in the gas phase, it is efficient under aqueous phase conditions in the hydrogenation of ketones such as the conversion of levulinic acid into gamma-valerolactone. Combining DFT calculations and experiments, we demonstrate that water is responsible for the enhanced reactivity of Ru under those conditions.


Assuntos
Cetonas/química , Lactonas/química , Ácidos Levulínicos/química , Catálise , Hidrogenação , Modelos Moleculares , Água/química
8.
Appl Spectrosc ; 67(12): 1437-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24359658

RESUMO

Ceramizable (ceramifiable) silicone rubber-based composites are commonly used for cable insulation. These materials are able to create a protective ceramic layer during fire due to the ceramization process, which occurs at high temperature. When the temperature is increased, the polymer matrix is degraded and filler particles stick together by the fluxing agent, producing a solid, continuous ceramic phase that protects the copper wire from heat and mechanical stress. Despite increasing interest in these materials that has resulted in growing applications in the cable industry, their thermal behavior and ceramization process are still insufficiently described in the literature. In this paper, the thermal behavior of ceramizable silicone rubber-based composites is studied using microcalorimetry and Fourier transform infrared spectroscopy. The analysis of the experimental data made it possible to develop complete information on the mechanism of composite ceramization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA