Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(9): e1009880, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529737

RESUMO

Staphylococcus aureus is a human commensal organism and opportunist pathogen, causing potentially fatal disease. The presence of non-pathogenic microflora or their components, at the point of infection, dramatically increases S. aureus pathogenicity, a process termed augmentation. Augmentation is associated with macrophage interaction but by a hitherto unknown mechanism. Here, we demonstrate a breadth of cross-kingdom microorganisms can augment S. aureus disease and that pathogenesis of Enterococcus faecalis can also be augmented. Co-administration of augmenting material also forms an efficacious vaccine model for S. aureus. In vitro, augmenting material protects S. aureus directly from reactive oxygen species (ROS), which correlates with in vivo studies where augmentation restores full virulence to the ROS-susceptible, attenuated mutant katA ahpC. At the cellular level, augmentation increases bacterial survival within macrophages via amelioration of ROS, leading to proliferation and escape. We have defined the molecular basis for augmentation that represents an important aspect of the initiation of infection.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Simbiose/fisiologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Sepse/imunologia , Sepse/microbiologia , Infecções Estafilocócicas/imunologia , Peixe-Zebra
2.
Evolution ; 57(5): 1031-48, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12836821

RESUMO

Taxonomic revision and cladistic analysis of a morphological dataset for Australian Tertiary temnopleurids resolve the phylogeny of the group and allow the testing of a series of hypotheses about the evolution of larval development and consequences of changes in development. Australian Tertiary temnopleurids encompass all three major developmental types found in marine invertebrates (planktotrophy, lecithotrophy, and brooding). Planktotrophy is plesiomorphic for this clade, and nonplanktotrophic larval development evolved independently at least three times during the Tertiary. The change to a nonplanktotrophic mode of larval development is unidirectional with no evidence of reversal. In addition, there is no evidence of an ordered transformation series from planktotrophy through planktonic lecithotrophy to brooding. In common with previous studies of other invertebrate groups, analysis of the raw data suggests that nonplanktotrophic taxa within this clade have significantly shorter species longevities, more restricted geographic ranges and higher speciation rates than taxa with planktotrophic development. However, analysis using phylogenetically independent contrasts is unable to confirm that the stratigraphic and geographic patterns are unbiased by the phylogenetic relationships of the included taxa.


Assuntos
Equinodermos/anatomia & histologia , Equinodermos/classificação , Comportamento Alimentar , Fósseis , Filogenia , Animais , Equinodermos/crescimento & desenvolvimento , Geografia , Larva/anatomia & histologia , Larva/fisiologia , Especificidade da Espécie
3.
Mol Phylogenet Evol ; 28(1): 99-118, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12801474

RESUMO

The phylogenetic relationships of 24 nominal species of temnopleurid echinoid were established using molecular and morphological data sets. The analysis combined sequence data from mitochondrial 16S rRNA and cytochrome c oxidase subunit I genes and the nuclear 18S-like small subunit rRNA gene with morphological data concerning coronal, lantern, spine, and pedicellarial traits. All four data sets contain similar phylogenetic information, although each provides support at a different taxonomic level. Two data congruence tests (Templeton's test and the incongruence length difference test) suggested no significant heterogeneity between the data sets, and all data were combined in a total evidence analysis. The resulting well-resolved phylogeny suggests that Microcyphus, Amblypneustes, and Holopneustes are not monophyletic genera, and that Temnopleurus (Temnopleurus) and Temnopleurus (Toreumatica) are not closely related and should not be regarded as subgenera. In contrast to previous morphological analyses, Mespilia is found to be more closely related to Temnotrema and Toreumatica than it is to Microcyphus. The phylogeny was used to test a series of hypotheses about the evolution of developmental patterns. All species of Amblypneustes, Holopneustes, and Microcyphus are lecithotrophic, and many of these taxa are restricted to southern Australia. Planktotrophy is the ancestral condition for the temnopleurids, and the 11 instances of lecithotrophic nonplanktotrophy in this clade can be accounted for by a single developmental transition that occurred an estimated 4.4-7.4 million years ago, apparently before the migration of Microcyphus to southern Australia. The switch to a nonplanktotrophic mode of development is unidirectional with no evidence of reversals.


Assuntos
Filogenia , Ouriços-do-Mar/classificação , Ouriços-do-Mar/embriologia , Animais , Sequência de Bases , Análise por Conglomerados , Primers do DNA/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Evolução Molecular , Genes de RNAr/genética , Geografia , Funções Verossimilhança , Dados de Sequência Molecular , Oceanos e Mares , Fenótipo , Ouriços-do-Mar/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA