Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 261: 110241, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148310

RESUMO

A novel Anoxic-Aerobic Process (AnAP) that eliminated the anaerobic process was optimized and operated for the simultaneous remediation of phosphate, nitrate, and chemical oxygen demand (COD) from industrial effluents. Two sequential batch reactors (SBR) with AnAP were established for the treatment of effluent from two industries; phosphate fertilizer (AnASBR_PPL) and dairy industry (AnASBR_DW). The adaptability of the bacterial consortium in the SBRs, dominated by denitrifying phosphate accumulating organisms (DNPAOs), facilitates the stable performance of AnAP for simultaneous nutrient and COD removal. Up to 90% and ~80% of COD removal were achieved in AnASBR_PPL and AnASBR_DW, respectively. Nearly complete denitrification was observed along with phosphate removal accounted for ~90% in both the reactors. Granulation of sludge has been widely reported in aerobic reactors; however, interestingly, in this study, partial granulation of the sludge was observed in both the AnASBRs which facilitated the microorganisms to uptake a minimal amount of phosphate and nitrate even under the aerobic condition. The underlying mechanism of DNPAOs and other associated microbes in the consortium were investigated for microbial diversity by 16S rDNA based targeted amplicon sequencing using the Illumina platform and imputed metagenomic analysis. The dominance of Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, and Bacteroidia was observed in AnASBRs. At steady-state operation, the identity of the core community members remained largly stable, but their relative abundances changed considerably in both the reactors as a function of varying industrial effluent. However, population of few strains such as Lactobacteriales, Enterobacteriales changed drastically with respect to the influent, as these strains were predominat in AnASBR_DW but not present in AnASBR_PPL. The dominant strains were the vital contributor to the gene pool encoding for denitrification, dephosphatation, TCA cycle, glycolysis, EPS production, and polyhydroxyalkanoate (PHA) storage, etc. Few less abundant but persistent species were also detected as contributors to these functional groups. It unveiled the TCA cycle remains preferable over conventional glycolysis in both the SBR irrespective of carbon source. The new AnASBR was proved to be an efficient alternative system that is energy efficient with higher ease of operation for the treatment of different industrial effluents without fail.


Assuntos
Betaproteobacteria , Reatores Biológicos , Análise da Demanda Biológica de Oxigênio , Desnitrificação , Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos
2.
J Environ Manage ; 242: 210-219, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31039530

RESUMO

The present study successfully demonstrates greener methodology of hydrodynamic cavitation using rotational flows for disinfection of water. Disinfection of two model microbial strains-gram- negative (Escherichia coli) and gram-positive (Staphylococcus aureus) using vortex diode was evaluated. The removal efficacy was quantified for two different cavitation reactors. Practically complete elimination of E. coli was achieved (99%) after 1 h of cavitation at a pressure drop of only 0.5 bar. However, elimination of S. aureus using vortex diode was observed to be lower in comparison to the removal of E. coli and only 60% disinfection could be achieved under similar conditions, which can be subsequently enhanced up to 98% by increasing pressure drop. The results were compared with another cavitating device that employs linear flow for cavitation, orifice. The reactor geometry has significant impact on the disinfection process and orifice was found to require significantly higher pressure drop (10 bar) conditions for disinfection and for eliminating gram-positive bacteria with high efficiency. A plausible mechanism for disinfection was proposed to elucidate the role of cavitation in cell destruction leading to death of cells through the rupture of cell wall, oxidative damage and possible DNA denaturation. Also, a cavitation model using per pass disinfection was developed that can provide meaningful physical description of the disinfection process as against the conventional first order reaction rate model. This study would provide meaningful insight into cavitation process based on hydrodynamic cavitation for the destruction of both gram-negative and gram-positive bacteria from various water sources, including industrial wastewaters.


Assuntos
Hidrodinâmica , Purificação da Água , Desinfecção , Escherichia coli , Staphylococcus aureus , Água
3.
J Environ Manage ; 226: 95-105, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30114577

RESUMO

In the present study, two synthesis methods of nanocomposites-one involving a mixture of biomass and the other using chemical modification were investigated to evaluate practical application of green approach in pollution control, specifically for water and wastewater treatment. Newer multifunctional superparamagnetic nanocomposites using biomaterials such as unripened fruit of Cassia fistula (Golden shower) and Aloe vera were developed as an example of green approach while chemical modification was illustrated using n-octanol. Two specific model applications were studied for the developed materials-dye removal (Methyl Blue and Congo Red) and disinfection-demonstrating antimicrobial property. To elucidate the multifunctional character, the texture, morphology and composition of the prepared bionanocomposites were studied. The surface area values were 6.2 and 9.8 m2/g for Aloe vera and octanol based nanocomposites while the average pore diameters were 1.79 nm and 5.7 nm respectively, indicating presence of highly developed micropores in the first material having a honeycomb shape and the later showing excellent staircase type formation with larger pores. A very high dye removal to the extent of 100% was obtained that can be attributed largely to the functionalities imparted from Cassia fistula compared to ingredients from Aloe vera and octanol. The nanomaterials could be completely separated with absolute ease by applying simple magnetic field. Also, successful application of the developed materials in disinfection, removal of E. coli, was demonstrated with a very high efficiency of over 95%. The biomass derived nanocomposites exhibit excellent pollutant removal and disinfection properties, even at very low nanoparticle content; octanol based material indicating ∼5 times lowered cost, while the Aloe vera based bionanocomposites have potential for cost reduction to the extent of 10 times as compared to only magnetite nanoparticles, thereby highlighting techno-economical alternative in water and wastewater treatment.


Assuntos
Nanocompostos , Águas Residuárias , Biomassa , Escherichia coli , Água , Purificação da Água
4.
Indian J Microbiol ; 53(1): 92-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24426084

RESUMO

Soil from a pulse cultivated farmers land of Odisha, India, have been subjected to incubation studies for 40 consecutive days, to establish the impact of various nitrogenous fertilizers and water filled pore space (WFPS) on green house gas emission (N2O & CH4). C2H2 inhibition technique was followed to have a comprehensive understanding about the individual contribution of nitrifiers and denitrifiers towards the emission of N2O. Nevertheless, low concentration of C2H2 (5 ml: flow rate 0.1 kg/cm(2)) is hypothesized to partially impede the metabolic pathways of denitrifying bacterial population, thus reducing the overall N2O emission rate. Different soil parameters of the experimental soil such as moisture, total organic carbon, ammonium content and nitrate-nitrogen contents were measured at regular intervals. Application of external N-sources under different WFPS conditions revealed the diverse role played by the indigenous soil microorganism towards green house gas emission. Isolation of heterotrophic microorganisms (Pseudomonas) from the soil samples, further supported the fact that denitrification might be prevailing during specific conditions thus contributing to N2O emission. Statistical analysis showed that WFPS was the most influential parameter affecting N2O formation in soil in absence of an inhibitor like C2H2.

5.
PLoS One ; 10(2): e0116230, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25689047

RESUMO

Simultaneous nitrate-N, phosphate and COD removal was evaluated from synthetic waste water using mixed microbial consortia in an anoxic environment under various initial carbon load (ICL) in a batch scale reactor system. Within 6 hours of incubation, enriched DNPAOs (Denitrifying Polyphosphate Accumulating Microorganisms) were able to remove maximum COD (87%) at 2 g/L of ICL whereas maximum nitrate-N (97%) and phosphate (87%) removal along with PHB accumulation (49 mg/L) was achieved at 8 g/L of ICL. Exhaustion of nitrate-N, beyond 6 hours of incubation, had a detrimental effect on COD and phosphate removal rate. Fresh supply of nitrate-N to the reaction medium, beyond 6 hours, helped revive the removal rates of both COD and phosphate. Therefore, it was apparent that in spite of a high carbon load, maximum COD and nutrient removal can be maintained, with adequate nitrate-N availability. Denitrifying condition in the medium was evident from an increasing pH trend. PHB accumulation by the mixed culture was directly proportional to ICL; however the time taken for accumulation at higher ICL was more. Unlike conventional EBPR, PHB depletion did not support phosphate accumulation in this case. The unique aspect of all the batch studies were PHB accumulation was observed along with phosphate uptake and nitrate reduction under anoxic conditions. Bioinformatics analysis followed by pyrosequencing of the mixed culture DNA from the seed sludge revealed the dominance of denitrifying population, such as Corynebacterium, Rhodocyclus and Paraccocus (Alphaproteobacteria and Betaproteobacteria). Rarefaction curve indicated complete bacterial population and corresponding number of OTUs through sequence analysis. Chao1 and Shannon index (H') was used to study the diversity of sampling. "UCI95" and "LCI95" indicated 95% confidence level of upper and lower values of Chao1 for each distance. Values of Chao1 index supported the results of rarefaction curve.


Assuntos
Biologia Computacional/métodos , Consórcios Microbianos , Eliminação de Resíduos Líquidos/métodos , Anaerobiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA