Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726984

RESUMO

Magnetic resonance (MR) imaging (MRI) is routinely used to evaluate organ morphology and pathology in the human body at rest or in combination with pharmacological stress as an exercise surrogate. With MR during actual physical exercise, we can assess functional characteristics of tissues and organs under real-life stress conditions. This is particularly relevant in patients with limited exercise capacity or exercise intolerance, and where complaints typically present only during physical activity, such as in neuromuscular disorders, inherited metabolic diseases, and heart failure. This review describes practical and physiological aspects of exercise MR of skeletal muscles, the heart, and the brain. The acute effects of physical exercise on these organs are addressed in the light of various dynamic quantitative MR readouts, including phosphorus-31 MR spectroscopy (31P-MRS) of tissue energy metabolism, phase-contrast MRI of blood flow and muscle contraction, real-time cine MRI of cardiac performance, and arterial spin labeling MRI of muscle and brain perfusion. Exercise MR will help advancing our understanding of underlying mechanisms that contribute to exercise intolerance, which often proceed structural and anatomical changes in disease. Its potential to detect disease-driven alterations in organ function, perfusion, and metabolism under physiological stress renders exercise MR stress testing a powerful noninvasive imaging modality to aid in disease diagnosis and risk stratification. Although not yet integrated in most clinical workflows, and while some applications still require thorough validation, exercise MR has established itself as a comprehensive and versatile modality for characterizing physiology in health and disease in a noninvasive and quantitative way. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.

2.
Brain ; 145(4): 1422-1435, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34788410

RESUMO

Genetic therapy has changed the prognosis of hereditary proximal spinal muscular atrophy, although treatment efficacy has been variable. There is a clear need for deeper understanding of underlying causes of muscle weakness and exercise intolerance in patients with this disease to further optimize treatment strategies. Animal models suggest that in addition to motor neuron and associated musculature degeneration, intrinsic abnormalities of muscle itself including mitochondrial dysfunction contribute to the disease aetiology. To test this hypothesis in patients, we conducted the first in vivo clinical investigation of muscle bioenergetics. We recruited 15 patients and 15 healthy age and gender-matched control subjects in this cross-sectional clinico-radiological study. MRI and 31P magnetic resonance spectroscopy, the modality of choice to interrogate muscle energetics and phenotypic fibre-type makeup, was performed of the proximal arm musculature in combination with fatiguing arm-cycling exercise and blood lactate testing. We derived bioenergetic parameter estimates including: blood lactate, intramuscular pH and inorganic phosphate accumulation during exercise, and muscle dynamic recovery constants. A linear correlation was used to test for associations between muscle morphological and bioenergetic parameters and clinico-functional measures of muscle weakness. MRI showed significant atrophy of triceps but not biceps muscles in patients. Maximal voluntary contraction force normalized to muscle cross-sectional area for both arm muscles was 1.4-fold lower in patients than in controls, indicating altered intrinsic muscle properties other than atrophy contributed to muscle weakness in this cohort. In vivo31P magnetic resonance spectroscopy identified white-to-red remodelling of residual proximal arm musculature in patients on the basis of altered intramuscular inorganic phosphate accumulation during arm-cycling in red versus white and intermediate myofibres. Blood lactate rise during arm-cycling was blunted in patients and correlated with muscle weakness and phenotypic muscle makeup. Post-exercise metabolic recovery was slower in residual intramuscular white myofibres in patients demonstrating mitochondrial ATP synthetic dysfunction in this particular fibre type. This study provides the first in vivo evidence in patients that degeneration of motor neurons and associated musculature causing atrophy and muscle weakness in 5q spinal muscular atrophy type 3 and 4 is aggravated by disproportionate depletion of myofibres that contract fastest and strongest. Our finding of decreased mitochondrial ATP synthetic function selectively in residual white myofibres provides both a possible clue to understanding the apparent vulnerability of this particular fibre type in 5q spinal muscular atrophy types 3 and 4 as well as a new biomarker and target for therapy.


Assuntos
Debilidade Muscular , Atrofia Muscular Espinal , Trifosfato de Adenosina , Atrofia/patologia , Humanos , Lactatos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Mitocôndrias/patologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Atrofia Muscular Espinal/diagnóstico por imagem , Atrofia Muscular Espinal/patologia , Fosfatos
3.
NMR Biomed ; 35(7): e4696, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35052014

RESUMO

Quantitative magnetic resonance imaging (qMRI) is frequently used to map the disease state and disease progression in the lower extremity muscles of patients with spinal muscular atrophy (SMA). This is in stark contrast to the almost complete lack of data on the upper extremity muscles, which are essential for carrying out daily activities. The aim of this study was therefore to assess the disease state in the upper arm muscles of patients with SMA in comparison with healthy controls by quantitative assessment of fat fraction, diffusion indices, and water T2 relaxation times, and to relate these measures to muscle force. We evaluated 13 patients with SMA and 15 healthy controls with a 3-T MRI protocol consisting of DIXON, diffusion tensor imaging, and T2 sequences. qMRI measures were compared between groups and related to muscle force measured with quantitative myometry. Fat fraction was significantly increased in all upper arm muscles of the patients with SMA compared with healthy controls and correlated negatively with muscle force. Additionally, fat fraction was heterogeneously distributed within the triceps brachii (TB) and brachialis muscle, but not in the biceps brachii muscle. Diffusion indices and water T2 relaxation times were similar between patients with SMA and healthy controls, but we did find a slightly reduced mean diffusivity (MD), λ1, and λ3 in the TB of patients with SMA. Furthermore, MD was positively correlated with muscle force in the TB of patients with SMA. The variation in fat fraction further substantiates the selective vulnerability of muscles. The reduced diffusion tensor imaging indices, along with the positive correlation of MD with muscle force, point to myofiber atrophy. Our results show the feasibility of qMRI to map the disease state in the upper arm muscles of patients with SMA. Longitudinal data in a larger cohort are needed to further explore qMRI to map disease progression and to capture the possible effects of therapeutic interventions.


Assuntos
Braço , Atrofia Muscular Espinal , Braço/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Progressão da Doença , Humanos , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Atrofia Muscular Espinal/diagnóstico por imagem , Extremidade Superior/diagnóstico por imagem , Água
4.
J Magn Reson Imaging ; 54(2): 411-420, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33569824

RESUMO

BACKGROUND: Proton magnetic resonance spectroscopy (1 H-MRS) of the human heart is deemed to be a quantitative method to investigate myocardial metabolite content, but thorough validations of in vivo measurements against invasive techniques are lacking. PURPOSE: To determine measurement precision and accuracy for quantifications of myocardial total creatine and triglyceride content with localized 1 H-MRS. STUDY TYPE: Test-retest repeatability and measurement validation study. SUBJECTS: Sixteen volunteers and 22 patients scheduled for open-heart aortic valve replacement or septal myectomy. FIELD STRENGTH/SEQUENCE: Prospectively ECG-triggered respiratory-gated free-breathing single-voxel point-resolved spectroscopy (PRESS) sequence at 3 T. ASSESSMENT: Myocardial total creatine and triglyceride content were quantified relative to the total water content by fitting the 1 H-MR spectra. Precision was assessed with measurement repeatability. Accuracy was assessed by validating in vivo 1 H-MRS measurements against biochemical assays in myocardial tissue from the same subjects. STATISTICAL TESTS: Intrasession and intersession repeatability was assessed using Bland-Altman analyses. Agreement between 1 H-MRS measurements and biochemical assay was tested with regression analyses. RESULTS: The intersession repeatability coefficient for myocardial total creatine content was 41.8% with a mean value of 0.083% ± 0.020% of the total water signal, and 36.7% for myocardial triglyceride content with a mean value of 0.35% ± 0.13% of the total water signal. Ex vivo myocardial total creatine concentrations in tissue samples correlated with the in vivo myocardial total creatine content measured with 1 H-MRS: n = 22, r = 0.44; P < 0.05. Likewise, ex vivo myocardial triglyceride concentrations correlated with the in vivo myocardial triglyceride content: n = 20, r = 0.50; P < 0.05. DATA CONCLUSION: We validated the use of localized 1 H-MRS of the human heart at 3 T for quantitative assessments of in vivo myocardial tissue metabolite content by estimating the measurement precision and accuracy. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Creatina , Miocárdio , Coração/diagnóstico por imagem , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Triglicerídeos
5.
J Inherit Metab Dis ; 44(1): 226-239, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33448466

RESUMO

Glycogen storage disease type IIIa (GSDIIIa) is an inborn error of carbohydrate metabolism caused by a debranching enzyme deficiency. A subgroup of GSDIIIa patients develops severe myopathy. The purpose of this study was to investigate whether acute nutritional ketosis (ANK) in response to ketone-ester (KE) ingestion is effective to deliver oxidative substrate to exercising muscle in GSDIIIa patients. This was an investigator-initiated, researcher-blinded, randomized, crossover study in six adult GSDIIIa patients. Prior to exercise subjects ingested a carbohydrate drink (~66 g, CHO) or a ketone-ester (395 mg/kg, KE) + carbohydrate drink (30 g, KE + CHO). Subjects performed 15-minute cycling exercise on an upright ergometer followed by 10-minute supine cycling in a magnetic resonance (MR) scanner at two submaximal workloads (30% and 60% of individual maximum, respectively). Blood metabolites, indirect calorimetry data, and in vivo 31 P-MR spectra from quadriceps muscle were collected during exercise. KE + CHO induced ANK in all six subjects with median peak ßHB concentration of 2.6 mmol/L (range: 1.6-3.1). Subjects remained normoglycemic in both study arms, but delta glucose concentration was 2-fold lower in the KE + CHO arm. The respiratory exchange ratio did not increase in the KE + CHO arm when workload was doubled in subjects with overt myopathy. In vivo 31 P MR spectra showed a favorable change in quadriceps energetic state during exercise in the KE + CHO arm compared to CHO in subjects with overt myopathy. Effects of ANK during exercise are phenotype-specific in adult GSDIIIa patients. ANK presents a promising therapy in GSDIIIa patients with a severe myopathic phenotype. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov identifier: NCT03011203.


Assuntos
Bebidas , Exercício Físico , Doença de Depósito de Glicogênio Tipo III/dietoterapia , Cetose/induzido quimicamente , Doenças Musculares/dietoterapia , Adulto , Glicemia/análise , Metabolismo dos Carboidratos , Estudos Cross-Over , Dieta Cetogênica , Carboidratos da Dieta , Ésteres/administração & dosagem , Feminino , Doença de Depósito de Glicogênio Tipo III/metabolismo , Humanos , Cetonas/administração & dosagem , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Países Baixos , Fenótipo
6.
NMR Biomed ; : e4246, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32037688

RESUMO

Skeletal muscle phosphorus-31 31 P MRS is the oldest MRS methodology to be applied to in vivo metabolic research. The technical requirements of 31 P MRS in skeletal muscle depend on the research question, and to assess those questions requires understanding both the relevant muscle physiology, and how 31 P MRS methods can probe it. Here we consider basic signal-acquisition parameters related to radio frequency excitation, TR, TE, spectral resolution, shim and localisation. We make specific recommendations for studies of resting and exercising muscle, including magnetisation transfer, and for data processing. We summarise the metabolic information that can be quantitatively assessed with 31 P MRS, either measured directly or derived by calculations that depend on particular metabolic models, and we give advice on potential problems of interpretation. We give expected values and tolerable ranges for some measured quantities, and minimum requirements for reporting acquisition parameters and experimental results in publications. Reliable examination depends on a reproducible setup, standardised preconditioning of the subject, and careful control of potential difficulties, and we summarise some important considerations and potential confounders. Our recommendations include the quantification and standardisation of contraction intensity, and how best to account for heterogeneous muscle recruitment. We highlight some pitfalls in the assessment of mitochondrial function by analysis of phosphocreatine (PCr) recovery kinetics. Finally, we outline how complementary techniques (near-infrared spectroscopy, arterial spin labelling, BOLD and various other MRI and 1 H MRS measurements) can help in the physiological/metabolic interpretation of 31 P MRS studies by providing information about blood flow and oxygen delivery/utilisation. Our recommendations will assist in achieving the fullest possible reliable picture of muscle physiology and pathophysiology.

7.
J Inherit Metab Dis ; 43(4): 787-799, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31955429

RESUMO

A maladaptive shift from fat to carbohydrate (CHO) oxidation during exercise is thought to underlie myopathy and exercise-induced rhabdomyolysis in patients with fatty acid oxidation (FAO) disorders. We hypothesised that ingestion of a ketone ester (KE) drink prior to exercise could serve as an alternative oxidative substrate supply to boost muscular ATP homeostasis. To establish a rational basis for therapeutic use of KE supplementation in FAO, we tested this hypothesis in patients deficient in Very Long-Chain acyl-CoA Dehydrogenase (VLCAD). Five patients (range 17-45 y; 4 M/1F) patients were included in an investigator-initiated, randomised, blinded, placebo-controlled, 2-way cross-over study. Patients drank either a KE + CHO mix or an isocaloric CHO equivalent and performed 35 minutes upright cycling followed by 10 minutes supine cycling inside a Magnetic Resonance scanner at individual maximal FAO work rate (fatmax; approximately 40% VO2 max). The protocol was repeated after a 1-week interval with the alternate drink. Primary outcome measures were quadriceps phosphocreatine (PCr), Pi and pH dynamics during exercise and recovery assayed by in vivo 31 P-MR spectroscopy. Secondary outcomes included plasma and muscle metabolites and respiratory gas exchange recordings. Ingestion of KE rapidly induced mild ketosis and increased muscle BHB content. During exercise at FATMAX, VLCADD-specific plasma acylcarnitine levels, quadriceps glycolytic intermediate levels and in vivo Pi/PCr ratio were all lower in KE + CHO than CHO. These results provide a rational basis for future clinical trials of synthetic ketone ester supplementation therapy in patients with FAO disorders. Trial registration: ClinicalTrials.gov. Protocol ID: NCT03531554; METC2014.492; ABR51222.042.14.


Assuntos
Bebidas , Síndrome Congênita de Insuficiência da Medula Óssea/dietoterapia , Treino Aeróbico , Cetose/induzido quimicamente , Erros Inatos do Metabolismo Lipídico/dietoterapia , Doenças Mitocondriais/dietoterapia , Doenças Musculares/dietoterapia , Adolescente , Adulto , Glicemia/análise , Carnitina/análogos & derivados , Carnitina/sangue , Síndrome Congênita de Insuficiência da Medula Óssea/metabolismo , Estudos Cross-Over , Dieta Cetogênica , Ésteres/administração & dosagem , Teste de Esforço , Feminino , Humanos , Cetonas/administração & dosagem , Erros Inatos do Metabolismo Lipídico/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Países Baixos , Troca Gasosa Pulmonar , Adulto Jovem
8.
BMJ Open Gastroenterol ; 10(1)2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996121

RESUMO

INTRODUCTION: Short-term exercise prehabilitation programmes have demonstrated promising results in improving aerobic capacity of unfit patients prior to major abdominal surgery. However, little is known about the cardiac and skeletal muscle adaptations explaining the improvement in aerobic capacity following short-term exercise prehabilitation. METHODS AND ANALYSIS: In this single-centre study with a pretest-post-test design, 12 unfit patients with a preoperative oxygen uptake (VO2) at the ventilatory anaerobic threshold ≤13 mL/kg/min and/or VO2 at peak exercise ≤18 mL/kg/min, who are scheduled to undergo hepatopancreatobiliary surgery at the University Medical Center Groningen (UMCG), the Netherlands, will be recruited. As part of standard care, unfit patients are advised to participate in a home-based exercise prehabilitation programme, comprising high-intensity interval training and functional exercises three times per week, combined with nutritional support, during a 4-week period. Pre-intervention and post-intervention, patients will complete a cardiopulmonary exercise test. Next to this, study participants will perform additional in-vivo exercise cardiac magnetic resonance (MR) imaging and phosphorus 31-MR spectroscopy of the quadriceps femoris muscle before and after the intervention to assess the effect on respectively cardiac and skeletal muscle function. ETHICS AND DISSEMINATION: This study was approved in May 2023 by the Medical Research Ethics Committee of the UMCG (registration number NL83611.042.23, March 2023) and is registered in the ClinicalTrials.gov register. Results of this study will be submitted for presentation at (inter)national congresses and publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT05772819.


Assuntos
Terapia por Exercício , Exercício Pré-Operatório , Humanos , Terapia por Exercício/métodos , Imageamento por Ressonância Magnética , Países Baixos
9.
Clin Neurophysiol ; 154: 100-106, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37595479

RESUMO

OBJECTIVE: To investigate the electrophysiological basis of pyridostigmine enhancement of endurance performance documented earlier in patients with spinal muscular atrophy (SMA). METHODS: We recorded surface electromyography (sEMG) in four upper extremity muscles of 31 patients with SMA types 2 and 3 performing endurance shuttle tests (EST) and maximal voluntary contraction (MVC) measurements during a randomized, double blind, cross-over, phase II trial. Linear mixed effect models (LMM) were used to assess the effect of pyridostigmine on (i) time courses of median frequencies and of root mean square (RMS) amplitudes of sEMG signals and (ii) maximal RMS amplitudes during MVC measurements. These sEMG changes over time indicate levels of peripheral muscle fatigue and recruitment of new motor units, respectively. RESULTS: In comparison to a placebo, patients with SMA using pyridostigmine had fourfold smaller decreases in frequency and twofold smaller increases in amplitudes of sEMG signals in some muscles, recorded during ESTs (p < 0.05). We found no effect of pyridostigmine on MVC RMS amplitudes. CONCLUSIONS: sEMG parameters indicate enhanced low-threshold (LT) motor unit (MU) function in upper-extremity muscles of patients with SMA treated with pyridostigmine. This may underlie their improved endurance. SIGNIFICANCE: Our results suggest that enhancing LT MU function may constitute a therapeutic strategy to reduce fatigability in patients with SMA.


Assuntos
Atrofia Muscular Espinal , Brometo de Piridostigmina , Humanos , Brometo de Piridostigmina/farmacologia , Brometo de Piridostigmina/uso terapêutico , Eletromiografia/métodos , Músculos/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia
12.
J Neuromuscul Dis ; 9(3): 397-409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35466947

RESUMO

BACKGROUND: Exercise intolerance is an important impairment in patients with SMA, but little is known about the mechanisms underlying this symptom. OBJECTIVE: To investigate if reduced motor unit and capillary recruitment capacity in patients with SMA contribute to exercise intolerance. METHODS: Adolescent and adult patients with SMA types 3 and 4 (n = 15) and age- and gender matched controls (n = 15) performed a maximal upper body exercise test. We applied respiratory gas analyses, non-invasive surface electromyography (sEMG) and continuous wave near-infrared spectroscopy (CW-NIRS) to study oxygen consumption, arm muscle motor unit- and capillary recruitment, respectively. RESULTS: Maximal exercise duration was twofold lower (p < 0.001) and work of breathing and ventilation was 1.6- and 1.8-fold higher (p < 0.05) in patients compared to controls, respectively. Regarding motor unit recruitment, we found higher normalized RMS amplitude onset values of sEMG signals from all muscles and the increase in normalized RMS amplitudes was similar in the m. triceps brachii, m. brachioradialis and m. flexor digitorum in SMA compared to controls. Median frequency, onset values were similar in patients and controls. We found a similar decrease in median frequencies of sEMG recordings from the m. biceps brachii, a diminished decrease from the m. brachioradialis and m. flexor digitorum, but a larger decrease from the m. triceps brachii. With respect to capillary recruitment, CW-NIRS recordings in m. biceps brachii revealed dynamics that were both qualitatively and quantitatively similar in patients and controls. CONCLUSION: We found no evidence for the contribution of motor unit and capillary recruitment capacity of the upper arm muscles in adolescent and adult patients with SMA types 3 and 4 as primary limiting factors to premature fatigue during execution of a maximal arm-cycling task.


Assuntos
Fadiga Muscular , Atrofia Muscular Espinal , Adolescente , Adulto , Braço , Eletromiografia/métodos , Fadiga , Humanos , Fadiga Muscular/fisiologia
13.
Am J Physiol Regul Integr Comp Physiol ; 300(6): R1316-25, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21451138

RESUMO

Past simulations of oxidative ATP metabolism in skeletal muscle have predicted that elimination of the creatine kinase (CK) reaction should result in dramatically faster oxygen consumption dynamics during transitions in ATP turnover rate. This hypothesis was investigated. Oxygen consumption of fast-twitch (FT) muscle isolated from wild-type (WT) and transgenic mice deficient in the myoplasmic (M) and mitochondrial (Mi) CK isoforms (MiM CK(-/-)) were measured at 20°C at rest and during electrical stimulation. MiM CK(-/-) muscle oxygen consumption activation kinetics during a step change in contraction rate were 30% faster than WT (time constant 53 ± 3 vs. 69 ± 4 s, respectively; mean ± SE, n = 8 and 6, respectively). MiM CK(-/-) muscle oxygen consumption deactivation kinetics were 380% faster than WT (time constant 74 ± 4 s vs. 264 ± 4 s, respectively). Next, the experiments were simulated using a computational model of the oxidative ATP metabolic network in FT muscle featuring ADP and Pi feedback control of mitochondrial respiration (J. A. L. Jeneson, J. P. Schmitz, N. A. van den Broek, N. A. van Riel, P. A. Hilbers, K. Nicolay, J. J. Prompers. Am J Physiol Endocrinol Metab 297: E774-E784, 2009) that was reparameterized for 20°C. Elimination of Pi control via clamping of the mitochondrial Pi concentration at 10 mM reproduced past simulation results of dramatically faster kinetics in CK(-/-) muscle, while inclusion of Pi control qualitatively explained the experimental observations. On this basis, it was concluded that previous studies of the CK-deficient FT muscle phenotype underestimated the contribution of Pi to mitochondrial respiratory control.


Assuntos
Creatina Quinase Forma MM/deficiência , Creatina Quinase Forma MM/metabolismo , Mitocôndrias Musculares/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxigênio/fisiologia , Fosfatos/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Fenômenos Biomecânicos , Respiração Celular/fisiologia , Creatina Quinase Forma MM/genética , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Animais , Modelos Teóricos , Fenótipo
14.
Crit Rev Biomed Eng ; 39(5): 363-77, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22196159

RESUMO

Mitochondria are the power plant of the heart, burning fat and sugars to supply the muscle with the adenosine triphosphate (ATP) free energy that drives contraction and relaxation during each heart beat. This function was first captured in a mathematical model in 1967. Today, interest in such a model has been rekindled by ongoing in silico integrative physiology efforts such as the Cardiac Physiome project. Here, the status of the field of computational modeling of mitochondrial ATP synthetic function is reviewed.


Assuntos
Trifosfato de Adenosina/metabolismo , Simulação por Computador , Metabolismo Energético/fisiologia , Transferência de Energia , Mitocôndrias/metabolismo , Modelos Biológicos , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Mamíferos , Oxirredução , Fosforilação/fisiologia , Espécies Reativas de Oxigênio/metabolismo
15.
Front Physiol ; 12: 599514, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679429

RESUMO

INTRODUCTION: Evaluation of the effect of human upper-body training regimens may benefit from knowledge of local energy expenditure in arm muscles. To that end, we developed a novel arm-crank ergometry platform for use in a clinical magnetic resonance (MR) scanner with 31P spectroscopy capability to study arm muscle energetics. Complementary datasets on heart-rate, whole-body oxygen consumption, proximal arm-muscle electrical activity and power output, were obtained in a mock-up scanner. The utility of the platform was tested by a preliminary study over 4 weeks of skill practice on the efficiency of execution of a dynamic arm-cranking task in healthy subjects. RESULTS: The new platform successfully recorded the first ever in vivo 31P MR spectra from the human biceps brachii (BB) muscle during dynamic exercise in five healthy subjects. Changes in BB energy- and pH balance varied considerably between individuals. Surface electromyography and mechanical force recordings revealed that individuals employed different arm muscle recruitment strategies, using either predominantly elbow flexor muscles (pull strategy; two subjects), elbow extensor muscles (push strategy; one subject) or a combination of both (two subjects). The magnitude of observed changes in BB energy- and pH balance during ACT execution correlated closely with each strategy. Skill practice improved muscle coordination but did not alter individual strategies. Mechanical efficiency on group level seemed to increase as a result of practice, but the outcomes generated by the new platform showed the additional caution necessary for the interpretation that total energy cost was actually reduced at the same workload. CONCLUSION: The presented platform integrates dynamic in vivo 31P MRS recordings from proximal arm muscles with whole-body calorimetry, surface electromyography and biomechanical measurements. This new methodology enables evaluation of cyclic motor performance and outcomes of upper-body training regimens in healthy novices. It may be equally useful for investigations of exercise physiology in lower-limb impaired athletes and wheelchair users as well as frail patients including patients with debilitating muscle disease and the elderly.

16.
Clin Neurophysiol ; 132(3): 800-807, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33581592

RESUMO

OBJECTIVE: To investigate the availability of any motor unit reserve capacity during fatiguing endurance testing in patients with spinal muscular atrophy (SMA). METHODS: We recorded surface electromyography (sEMG) of various muscles of upper- and lower extremities of 70 patients with SMA types 2-4 and 19 healthy controls performing endurance shuttle tests (ESTs) of arm and legs. We quantitatively evaluated the development of fatigability and motor unit recruitment using time courses of median frequencies and amplitudes of sEMG signals. Linear mixed effect statistical models were used to evaluate group differences in median frequency and normalized amplitude at onset and its time course. RESULTS: Normalized sEMG amplitudes at onset of upper body ESTs were significantly higher in patients compared to controls, yet submaximal when related to maximal voluntary contractions, and showed an inverse correlation to SMA phenotype. sEMG median frequencies decreased and amplitudes increased in various muscles during execution of ESTs in patients and controls. CONCLUSIONS: Decreasing median frequencies and increasing amplitudes reveal motor unit reserve capacity in individual SMA patients during ESTs at submaximal performance intensities. SIGNIFICANCE: Preserving, if not expanding motor unit reserve capacity may present a potential therapeutic target in clinical care to reduce fatigability in individual patients with SMA.


Assuntos
Eletromiografia/métodos , Fadiga Muscular/fisiologia , Atrofia Muscular Espinal/fisiopatologia , Resistência Física/fisiologia , Recrutamento Neurofisiológico/fisiologia , Adolescente , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Contração Muscular/fisiologia , Atrofia Muscular Espinal/diagnóstico , Sistema de Registros , Adulto Jovem
17.
Magn Reson Med ; 63(1): 257-61, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19918886

RESUMO

An MR-compatible ergometer was developed for in-magnet whole-body human exercise testing. Designed on the basis of conventional mechanically braked bicycle ergometers and constructed from nonferrous materials, the ergometer was implemented on a 1.5-T whole-body MR scanner. A spectrometer interface was constructed using standard scanner hardware, complemented with custom-built parts and software to enable gated data acquisition during exercise. High-quality 31P NMR spectra were reproducibly obtained from the medial head of the quadriceps muscle of the right leg of eight healthy subjects during two-legged high-frequency pedaling (80 revolutions per minute) at three incremental workloads, including maximal. Muscle phosphocreatine content dropped 82%, from 32.2+/-1.0 mM at rest to 5.7+/-1.1 mM at maximal workload (mean+/-standard error; n=8), indicating that the majority of quadriceps motor units were recruited. The cardiovascular load of the exercise was likewise significant, as evidenced by heart rates of 150 (+/-10%) beats per minute, measured immediately afterward. As such, the newly developed MR bicycling exercise equipment offers a powerful new tool for clinical musculoskeletal and cardiovascular MR investigation. The basic design of the ergometer is highly generic and adaptable for application on a wide selection of whole-body MR scanners.


Assuntos
Artefatos , Teste de Esforço/instrumentação , Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Imagem Corporal Total/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Biochem Soc Trans ; 38(5): 1294-301, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20863302

RESUMO

Human metabolic diseases are typically network diseases. This holds not only for multifactorial diseases, such as metabolic syndrome or Type 2 diabetes, but even when a single gene defect is the primary cause, where the adaptive response of the entire network determines the severity of disease. The latter may differ between individuals carrying the same mutation. Understanding the adaptive responses of human metabolism naturally requires a systems biology approach. Modelling of metabolic pathways in micro-organisms and some mammalian tissues has yielded many insights, qualitative as well as quantitative, into their control and regulation. Yet, even for a well-known pathway such as glycolysis, precise predictions of metabolite dynamics from experimentally determined enzyme kinetics have been only moderately successful. In the present review, we compare kinetic models of glycolysis in three cell types (African trypanosomes, yeast and skeletal muscle), evaluate their predictive power and identify limitations in our understanding. Although each of these models has its own merits and shortcomings, they also share common features. For example, in each case independently measured enzyme kinetic parameters were used as input. Based on these 'lessons from glycolysis', we will discuss how to make best use of kinetic computer models to advance our understanding of human metabolic diseases.


Assuntos
Biologia de Sistemas , Animais , Glicólise , Humanos , Cinética , Doenças Metabólicas/metabolismo , Modelos Biológicos , Músculo Esquelético/metabolismo , Saccharomyces cerevisiae/metabolismo , Trypanosoma brucei brucei/metabolismo
19.
Exp Physiol ; 95(2): 380-97, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19801387

RESUMO

The longstanding problem of rapid inactivation of the glycolytic pathway in skeletal muscle after contraction was investigated using (31)P NMR spectroscopy and computational modelling. Accumulation of phosphorylated glycolytic intermediates (hexose monophosphates) during cyclic contraction and subsequent turnover during metabolic recovery was measured in vivo in human quadriceps muscle using dynamic (31)P NMR spectroscopy. The concentration of hexose monophosphates in muscle peaked 40 s into metabolic recovery from maximal contractile work at 6.9 +/- 1.3 mm (mean +/- s.d.; n = 8) and subsequently declined at a rate of 0.009 +/- 0.001 mm s(1). It was next tested whether the current knowledge of the kinetic controls in the glycolytic pathway in muscle integrated in the Lambeth and Kushmerick computational model of skeletal muscle glycolysis explained the experimental data. It was found that the model underestimated the magnitude of deactivation of the glycolytic pathway in resting muscle, resulting in depletion of glycolytic intermediates and substrate for oxidative ATP synthesis. Numerical analysis of the model identified phosphofructokinase and pyruvate kinase as the kinetic control sites involved in deactivation of the glycolytic pathway. Ancillary 100-fold inhibition of both phosphofructokinase and pyruvate kinase was found necessary to predict glycolytic intermediate and ADP concentrations correctly in resting human muscle. Incorporation of this information into the model resulted in highly improved agreement between predicted and measured in vivo dynamics of hexose monophosphates in muscle following contraction. We concluded that silencing of the glycolytic pathway in muscle following contraction is most likely to be mediated by phosphofructokinase and pyruvate kinase inactivation on a time scale of seconds and minutes, respectively, and is necessary to prevent depletion of vital cellular substrates.


Assuntos
Glucose/metabolismo , Glicólise/fisiologia , Modelos Biológicos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Resistência Física/fisiologia , Adaptação Fisiológica/fisiologia , Simulação por Computador , Humanos
20.
Acta Physiol (Oxf) ; 229(2): e13400, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31600860

RESUMO

AIM: Loss of skeletal muscle mass is a common clinical finding in cancer patients. The purpose of this meta-analysis and systematic review was to quantify the effect of doxorubicin on skeletal muscle and report on the proposed molecular pathways possibly leading to doxorubicin-induced muscle atrophy in both human and animal models. METHODS: A systematic search of the literature was conducted in PubMed, EMBASE, Web of Science and CENTRAL databases. The internal validity of included studies was assessed using SYRCLE's risk of bias tool. RESULTS: Twenty eligible articles were identified. No human studies were identified as being eligible for inclusion. Doxorubicin significantly reduced skeletal muscle weight (ie EDL, TA, gastrocnemius and soleus) by 14% (95% CI: 9.9; 19.3) and muscle fibre cross-sectional area by 17% (95% CI: 9.0; 26.0) when compared to vehicle controls. Parallel to negative changes in muscle mass, muscle strength was even more decreased in response to doxorubicin administration. This review suggests that mitochondrial dysfunction plays a central role in doxorubicin-induced skeletal muscle atrophy. The increased production of ROS plays a key role within this process. Furthermore, doxorubicin activated all major proteolytic systems (ie calpains, the ubiquitin-proteasome pathway and autophagy) in the skeletal muscle. Although each of these proteolytic pathways contributes to doxorubicin-induced muscle atrophy, the activation of the ubiquitin-proteasome pathway is hypothesized to play a key role. Finally, a limited number of studies found that doxorubicin decreases protein synthesis by a disruption in the insulin signalling pathway. CONCLUSION: The results of the meta-analysis show that doxorubicin induces skeletal muscle atrophy in preclinical models. This effect may be explained by various interacting molecular pathways. Results from preclinical studies provide a robust setting to investigate a possible dose-response, separate the effects of doxorubicin from tumour-induced atrophy and to examine underlying molecular pathways. More research is needed to confirm the proposed signalling pathways in humans, paving the way for potential therapeutic approaches.


Assuntos
Doxorrubicina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Animais , Doxorrubicina/administração & dosagem , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA