Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 428(6986): 919-21, 2004 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15118719

RESUMO

Two pulsars (PSR J0737-3039A and B) were recently discovered in highly relativistic orbits around one another. The system contains a rapidly rotating pulsar with a spin period of 22.7 ms and a slow companion with a spin period of 2.77 s, referred to here as 'A' and 'B', respectively. A unique property of the system is that the pulsed radio flux from B increases systematically by almost two orders of magnitude during two short portions of its orbit. Here we report a geometrical model of the system that simultaneously explains the intensity variations of B and provides constraints on the spin axis orientation and emission geometry of A. Our model assumes that B's pulsed radio flux increases when illuminated by emission from A. We predict that A's pulse profile will evolve considerably over the next several years owing to geodetic precession until it disappears entirely in 15-20 years.

2.
Science ; 320(5881): 1309-12, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18483399

RESUMO

Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M(middle dot in circle)) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 M solar symbol, an unusually high value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA