Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 54(13): 3937-40, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25650563

RESUMO

Antimicrobial resistance and the shortage of novel antibiotics have led to an urgent need for new antibacterial drug leads. Several existing natural product scaffolds (including chelocardins) have not been developed because their suboptimal pharmacological properties could not be addressed at the time. It is demonstrated here that reviving such compounds through the application of biosynthetic engineering can deliver novel drug candidates. Through a rational approach, the carboxamido moiety of tetracyclines (an important structural feature for their bioactivity) was introduced into the chelocardins, which are atypical tetracyclines with an unknown mode of action. A broad-spectrum antibiotic lead was generated with significantly improved activity, including against all Gram-negative pathogens of the ESKAPE panel. Since the lead structure is also amenable to further chemical modification, it is a platform for further development through medicinal chemistry and genetic engineering.


Assuntos
Antibacterianos/síntese química , Tetraciclinas/síntese química , Antibacterianos/farmacologia , Química Farmacêutica , Farmacorresistência Bacteriana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Conformação Molecular , Engenharia de Proteínas , Relação Estrutura-Atividade , Tetraciclinas/farmacologia
2.
Microbiology (Reading) ; 159(Pt 12): 2524-2532, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24043447

RESUMO

Tetracyclines (TCs) are medically important antibiotics from the polyketide family of natural products. Chelocardin (CHD), produced by Amycolatopsis sulphurea, is a broad-spectrum tetracyclic antibiotic with potent bacteriolytic activity against a number of Gram-positive and Gram-negative multi-resistant pathogens. CHD has an unknown mode of action that is different from TCs. It has some structural features that define it as 'atypical' and, notably, is active against tetracycline-resistant pathogens. Identification and characterization of the chelocardin biosynthetic gene cluster from A. sulphurea revealed 18 putative open reading frames including a type II polyketide synthase. Compared to typical TCs, the chd cluster contains a number of features that relate to its classification as 'atypical': an additional gene for a putative two-component cyclase/aromatase that may be responsible for the different aromatization pattern, a gene for a putative aminotransferase for C-4 with the opposite stereochemistry to TCs and a gene for a putative C-9 methylase that is a unique feature of this biosynthetic cluster within the TCs. Collectively, these enzymes deliver a molecule with different aromatization of ring C that results in an unusual planar structure of the TC backbone. This is a likely contributor to its different mode of action. In addition CHD biosynthesis is primed with acetate, unlike the TCs, which are primed with malonamate, and offers a biosynthetic engineering platform that represents a unique opportunity for efficient generation of novel tetracyclic backbones using combinatorial biosynthesis.


Assuntos
Actinomycetales/genética , Actinomycetales/metabolismo , Antibacterianos/biossíntese , Vias Biossintéticas/genética , Família Multigênica , Tetraciclinas/biossíntese , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Análise de Sequência de DNA
3.
Sci Rep ; 7(1): 11260, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900161

RESUMO

Coenzyme A is an essential metabolite known for its central role in over one hundred cellular metabolic reactions. In cells, Coenzyme A is synthesized de novo in five enzymatic steps with vitamin B5 as the starting metabolite, phosphorylated by pantothenate kinase. Mutations in the pantothenate kinase 2 gene cause a severe form of neurodegeneration for which no treatment is available. One therapeutic strategy is to generate Coenzyme A precursors downstream of the defective step in the pathway. Here we describe the synthesis, characteristics and in vivo rescue potential of the acetyl-Coenzyme A precursor S-acetyl-4'-phosphopantetheine as a possible treatment for neurodegeneration associated with pantothenate kinase deficiency.


Assuntos
Transtornos Heredodegenerativos do Sistema Nervoso/tratamento farmacológico , Panteteína/análogos & derivados , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Soro/química , Animais , Linhagem Celular , Modelos Animais de Doenças , Drosophila , Humanos , Camundongos , Panteteína/administração & dosagem , Panteteína/síntese química , Panteteína/isolamento & purificação , Panteteína/farmacocinética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA