Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(20): 3705-3719.e14, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179667

RESUMO

The intestinal microbiota is an important modulator of graft-versus-host disease (GVHD), which often complicates allogeneic hematopoietic stem cell transplantation (allo-HSCT). Broad-spectrum antibiotics such as carbapenems increase the risk for intestinal GVHD, but mechanisms are not well understood. In this study, we found that treatment with meropenem, a commonly used carbapenem, aggravates colonic GVHD in mice via the expansion of Bacteroides thetaiotaomicron (BT). BT has a broad ability to degrade dietary polysaccharides and host mucin glycans. BT in meropenem-treated allogeneic mice demonstrated upregulated expression of enzymes involved in the degradation of mucin glycans. These mice also had thinning of the colonic mucus layer and decreased levels of xylose in colonic luminal contents. Interestingly, oral xylose supplementation significantly prevented thinning of the colonic mucus layer in meropenem-treated mice. Specific nutritional supplementation strategies, including xylose supplementation, may combat antibiotic-mediated microbiome injury to reduce the risk for intestinal GVHD in allo-HSCT patients.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteroides , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Meropeném , Camundongos , Mucinas/metabolismo , Muco/metabolismo , Polissacarídeos/metabolismo , Xilose
2.
Cell ; 178(4): 795-806.e12, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398337

RESUMO

Most patients diagnosed with resected pancreatic adenocarcinoma (PDAC) survive less than 5 years, but a minor subset survives longer. Here, we dissect the role of the tumor microbiota and the immune system in influencing long-term survival. Using 16S rRNA gene sequencing, we analyzed the tumor microbiome composition in PDAC patients with short-term survival (STS) and long-term survival (LTS). We found higher alpha-diversity in the tumor microbiome of LTS patients and identified an intra-tumoral microbiome signature (Pseudoxanthomonas-Streptomyces-Saccharopolyspora-Bacillus clausii) highly predictive of long-term survivorship in both discovery and validation cohorts. Through human-into-mice fecal microbiota transplantation (FMT) experiments from STS, LTS, or control donors, we were able to differentially modulate the tumor microbiome and affect tumor growth as well as tumor immune infiltration. Our study demonstrates that PDAC microbiome composition, which cross-talks to the gut microbiome, influences the host immune response and natural history of the disease.


Assuntos
Carcinoma Ductal Pancreático/microbiologia , Carcinoma Ductal Pancreático/mortalidade , Microbioma Gastrointestinal , Neoplasias Pancreáticas/microbiologia , Neoplasias Pancreáticas/mortalidade , Adulto , Idoso , Animais , Bactérias/classificação , Linhagem Celular Tumoral , Estudos de Coortes , Transplante de Microbiota Fecal , Fezes/microbiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Análise de Sequência de RNA , Taxa de Sobrevida
3.
Immunity ; 56(2): 353-368.e6, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36736321

RESUMO

The severity of T cell-mediated gastrointestinal (GI) diseases such as graft-versus-host disease (GVHD) and inflammatory bowel diseases correlates with a decrease in the diversity of the host gut microbiome composition characterized by loss of obligate anaerobic commensals. The mechanisms underpinning these changes in the microbial structure remain unknown. Here, we show in multiple specific pathogen-free (SPF), gnotobiotic, and germ-free murine models of GI GVHD that the initiation of the intestinal damage by the pathogenic T cells altered ambient oxygen levels in the GI tract and caused dysbiosis. The change in oxygen levels contributed to the severity of intestinal pathology in a host intestinal HIF-1α- and a microbiome-dependent manner. Regulation of intestinal ambient oxygen levels with oral iron chelation mitigated dysbiosis and reduced the severity of the GI GVHD. Thus, targeting ambient intestinal oxygen levels may represent a novel, non-immunosuppressive strategy to mitigate T cell-driven intestinal diseases.


Assuntos
Gastroenteropatias , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Camundongos , Disbiose , Intestinos/patologia , Doença Enxerto-Hospedeiro/patologia
4.
Nat Immunol ; 17(5): 505-513, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26998764

RESUMO

The effect of alterations in intestinal microbiota on microbial metabolites and on disease processes such as graft-versus-host disease (GVHD) is not known. Here we carried out an unbiased analysis to identify previously unidentified alterations in gastrointestinal microbiota-derived short-chain fatty acids (SCFAs) after allogeneic bone marrow transplant (allo-BMT). Alterations in the amount of only one SCFA, butyrate, were observed only in the intestinal tissue. The reduced butyrate in CD326(+) intestinal epithelial cells (IECs) after allo-BMT resulted in decreased histone acetylation, which was restored after local administration of exogenous butyrate. Butyrate restoration improved IEC junctional integrity, decreased apoptosis and mitigated GVHD. Furthermore, alteration of the indigenous microbiota with 17 rationally selected strains of high butyrate-producing Clostridia also decreased GVHD. These data demonstrate a heretofore unrecognized role of microbial metabolites and suggest that local and specific alteration of microbial metabolites has direct salutary effects on GVHD target tissues and can mitigate disease severity.


Assuntos
Células Epiteliais/imunologia , Microbioma Gastrointestinal/imunologia , Doença Enxerto-Hospedeiro/imunologia , Intestinos/imunologia , Metaboloma/imunologia , Acetilação/efeitos dos fármacos , Animais , Transplante de Medula Óssea/efeitos adversos , Transplante de Medula Óssea/métodos , Butiratos/imunologia , Butiratos/metabolismo , Butiratos/farmacologia , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Ácidos Graxos Voláteis/imunologia , Ácidos Graxos Voláteis/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Microbioma Gastrointestinal/fisiologia , Expressão Gênica/imunologia , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/microbiologia , Histona Acetiltransferases/genética , Histona Acetiltransferases/imunologia , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/imunologia , Histona Desacetilases/metabolismo , Histonas/imunologia , Histonas/metabolismo , Immunoblotting , Intestinos/citologia , Intestinos/microbiologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transplante Homólogo
5.
Blood ; 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39441941

RESUMO

Antibiotic-induced microbiome dysbiosis is widespread in oncology, adversely affecting outcomes and side effects of various cancer treatments, including immune checkpoint inhibitors and chimeric antigen receptor T (CAR-T) cell therapies. In this study, we observed that prior exposure to broad-spectrum ABX with extended anaerobic coverage like piperacillin-tazobactam and meropenem was associated with worsened anti-CD19 CAR-T therapy survival outcomes in large B-cell lymphoma patients (n=422), compared to other ABX classes. In a discovery subset of these patients (n=67), we found that the use of these ABX was in turn associated with substantial dysbiosis of gut microbiome function, resulting in significant alterations of the gut and blood metabolome, including microbial effectors such as short-chain fatty acids (SCFAs) and other anionic metabolites, findings that were largely reproduced in an external validation cohort (n=58). Broader evaluation of circulating microbial metabolites revealed reductions in indole and cresol derivatives, as well as trimethylamine N-oxide, in patients who received ABX treatment (discovery n=40, validation n=28). These findings were recapitulated in an immune-competent CAR-T mouse model, where meropenem-induced dysbiosis led to a systemic dysmetabolome and decreased murine anti-CD19 CAR-T efficacy. Furthermore, we demonstrate that SCFAs can enhance the metabolic fitness of CAR-T cells, leading to improved tumor killing capacity. Together, these results suggest that broad-spectrum ABX deplete metabolically active commensals whose metabolites are essential for enhancing CAR-T efficacy, shedding light on the intricate relationship between ABX exposure, microbiome function and their impact on CAR-T cell efficacy. This highlights the potential for modulating the microbiome to augment CAR-T immunotherapy.

6.
Bioinformatics ; 40(6)2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38788190

RESUMO

MOTIVATION: Although the human microbiome plays a key role in health and disease, the biological mechanisms underlying the interaction between the microbiome and its host are incompletely understood. Integration with other molecular profiling data offers an opportunity to characterize the role of the microbiome and elucidate therapeutic targets. However, this remains challenging to the high dimensionality, compositionality, and rare features found in microbiome profiling data. These challenges necessitate the use of methods that can achieve structured sparsity in learning cross-platform association patterns. RESULTS: We propose Tree-Aggregated factor RegressiOn (TARO) for the integration of microbiome and metabolomic data. We leverage information on the taxonomic tree structure to flexibly aggregate rare features. We demonstrate through simulation studies that TARO accurately recovers a low-rank coefficient matrix and identifies relevant features. We applied TARO to microbiome and metabolomic profiles gathered from subjects being screened for colorectal cancer to understand how gut microrganisms shape intestinal metabolite abundances. AVAILABILITY AND IMPLEMENTATION: The R package TARO implementing the proposed methods is available online at https://github.com/amishra-stats/taro-package.


Assuntos
Microbiota , Humanos , Software , Metabolômica/métodos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/metabolismo , Microbioma Gastrointestinal , Algoritmos
7.
Blood ; 141(10): 1194-1208, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36044667

RESUMO

Acute graft-versus-host disease (aGVHD) limits the therapeutic benefit of allogeneic hematopoietic stem cell transplantation (allo-HSCT) and requires immunosuppressive prophylaxis that compromises antitumor and antipathogen immunity. OX40 is a costimulatory receptor upregulated on circulating T cells in aGVHD and plays a central role in driving the expansion of alloreactive T cells. Here, we show that OX40 is also upregulated on T cells infiltrating GVHD target organs in a rhesus macaque model, supporting the hypothesis that targeted ablation of OX40+ T cells will mitigate GVHD pathogenesis. We thus created an OX40-specific cytotoxic receptor that, when expressed on human T cells, enables selective elimination of OX40+ T cells. Because OX40 is primarily upregulated on CD4+ T cells upon activation, engineered OX40-specific T cells mediated potent cytotoxicity against activated CD4+ T cells and suppressed alloreactive T-cell expansion in a mixed lymphocyte reaction model. OX40 targeting did not inhibit antiviral activity of memory T cells specific to Epstein-Barr virus, cytomegalovirus, and adenoviral antigens. Systemic administration of OX40-targeting T cells fully protected mice from fatal xenogeneic GVHD mediated by human peripheral blood mononuclear cells. Furthermore, combining OX40 targeting with a leukemia-specific chimeric antigen receptor in a single T cell product provides simultaneous protection against leukemia and aGVHD in a mouse xenograft model of residual disease posttransplant. These results underscore the central role of OX40+ T cells in mediating aGVHD pathogenesis and support the feasibility of a bifunctional engineered T-cell product derived from the stem cell donor to suppress both disease relapse and aGVHD following allo-HSCT.


Assuntos
Infecções por Vírus Epstein-Barr , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia , Humanos , Animais , Camundongos , Leucócitos Mononucleares/patologia , Infecções por Vírus Epstein-Barr/complicações , Macaca mulatta , Herpesvirus Humano 4 , Doença Enxerto-Hospedeiro/etiologia , Leucemia/complicações , Doença Crônica , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Recidiva
9.
Proteomics ; : e2400078, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824665

RESUMO

The human gut microbiome plays a vital role in preserving individual health and is intricately involved in essential functions. Imbalances or dysbiosis within the microbiome can significantly impact human health and are associated with many diseases. Several metaproteomics platforms are currently available to study microbial proteins within complex microbial communities. In this study, we attempted to develop an integrated pipeline to provide deeper insights into both the taxonomic and functional aspects of the cultivated human gut microbiomes derived from clinical colon biopsies. We combined a rapid peptide search by MSFragger against the Unified Human Gastrointestinal Protein database and the taxonomic and functional analyses with Unipept Desktop and MetaLab-MAG. Across seven samples, we identified and matched nearly 36,000 unique peptides to approximately 300 species and 11 phyla. Unipept Desktop provided gene ontology, InterPro entries, and enzyme commission number annotations, facilitating the identification of relevant metabolic pathways. MetaLab-MAG contributed functional annotations through Clusters of Orthologous Genes and Non-supervised Orthologous Groups categories. These results unveiled functional similarities and differences among the samples. This integrated pipeline holds the potential to provide deeper insights into the taxonomy and functions of the human gut microbiome for interrogating the intricate connections between microbiome balance and diseases.

10.
Cancer ; 130(1): 150-161, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688396

RESUMO

BACKGROUND: This study investigated the influence of oral microbial features on the trajectory of oral mucositis (OM) in patients with squamous cell carcinoma of the head and neck. METHODS: OM severity was assessed and buccal swabs were collected at baseline, at the initiation of cancer treatment, weekly during cancer treatment, at the termination of cancer treatment, and after cancer treatment termination. The oral microbiome was characterized via the 16S ribosomal RNA V4 region with the Illumina platform. Latent class mixed-model analysis was used to group individuals with similar trajectories of OM severity. Locally estimated scatterplot smoothing was used to fit an average trend within each group and to assess the association between the longitudinal OM scores and longitudinal microbial abundances. RESULTS: Four latent groups (LGs) with differing patterns of OM severity were identified for 142 subjects. LG1 has an early onset of high OM scores. LGs 2 and 3 begin with relatively low OM scores until the eighth and 11th week, respectively. LG4 has generally flat OM scores. These LGs did not vary by treatment or clinical or demographic variables. Correlation analysis showed that the abundances of Bacteroidota, Proteobacteria, Bacteroidia, Gammaproteobacteria, Enterobacterales, Bacteroidales, Aerococcaceae, Prevotellaceae, Abiotrophia, and Prevotella_7 were positively correlated with OM severity across the four LGs. Negative correlation was observed with OM severity for a few microbial features: Abiotrophia and Aerococcaceae for LGs 2 and 3; Gammaproteobacteria and Proteobacteria for LGs 2, 3, and 4; and Enterobacterales for LGs 2 and 4. CONCLUSIONS: These findings suggest the potential to personalize treatment for OM. PLAIN LANGUAGE SUMMARY: Oral mucositis (OM) is a common and debilitating after effect for patients treated for squamous cell carcinoma of the head and neck. Trends in the abundance of specific microbial features may be associated with patterns of OM severity over time. Our findings suggest the potential to personalize treatment plans for OM via tailored microbiome interventions.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Microbiota , Estomatite , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinoma de Células Escamosas/tratamento farmacológico
11.
Blood ; 139(15): 2392-2405, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-34653248

RESUMO

The intestinal microbiota is essential for the fermentation of dietary fiber into short-chain fatty acids (SCFA) such as butyrate, acetate, and propionate. SCFAs can bind to the G-protein-coupled receptors GPR43 and GPR109A (HCAR2), with varying affinities to promote cellular effects in metabolism or changes in immune function. We explored the role of GPR109A as the main receptor for butyrate in mouse models of allogeneic hematopoietic cell transplantation (allo-HCT) and graft-versus-host disease (GVHD). Deletion of GPR109A in allo-HCT recipients did not affect GVHD, but transplantation of T cells from GPR109A knockout (KO) (Gpr109a-/-) mice into allo-HCT recipient mice significantly reduced GVHD morbidity and mortality compared with recipients of wild-type (WT) T cells. Recipients of Gpr109a-/- T cells exhibited less GVHD-associated target organ pathology and decreased proliferation and homing of alloreactive T cells to target tissues. Although Gpr109a-/- T cells did not exhibit immune deficits at a steady state, following allo-activation, Gpr109a-/- T cells underwent increased apoptosis and were impaired mitochondrial oxidative phosphorylation, which was reversible through antioxidant treatment with N-acetylcysteine (NAC). In conclusion, we found that GPR109A expression by allo-activated T cells is essential for metabolic homeostasis and expansion, which are necessary features to induce GVHD after allo-HCT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Butiratos , Ácidos Graxos Voláteis/fisiologia , Camundongos , Linfócitos T
12.
J Natl Compr Canc Netw ; 22(5)2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38190801

RESUMO

Immune checkpoint inhibitors (ICIs) have transformed the treatment paradigm for many cancer types. The clinical use of ICIs is increasing rapidly, including in combinations associated with increased risk of toxicities, termed "immune-related adverse events" (irAEs). Therefore, MD Anderson Cancer Center (MDACC) in Houston, Texas has proactively responded by developing a priority endeavor known as the Immuno-Oncology Toxicity (IOTOX) initiative. This strategic initiative aims to facilitate the seamless integration of key domains: (1) standardized clinical practice and innovative decision toolsets; (2) patient and provider education; and (3) a comprehensive clinical and translational research platform. The ultimate goal of this initiative is to develop and disseminate clinical best practices and biologic insights into irAEs to improve outcomes of patients with irAEs at MDACC and in the wider oncology community.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/uso terapêutico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/terapia , Texas , Imunoterapia/métodos , Imunoterapia/efeitos adversos
13.
N Engl J Med ; 382(9): 822-834, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32101664

RESUMO

BACKGROUND: Relationships between microbiota composition and clinical outcomes after allogeneic hematopoietic-cell transplantation have been described in single-center studies. Geographic variations in the composition of human microbial communities and differences in clinical practices across institutions raise the question of whether these associations are generalizable. METHODS: The microbiota composition of fecal samples obtained from patients who were undergoing allogeneic hematopoietic-cell transplantation at four centers was profiled by means of 16S ribosomal RNA gene sequencing. In an observational study, we examined associations between microbiota diversity and mortality using Cox proportional-hazards analysis. For stratification of the cohorts into higher- and lower-diversity groups, the median diversity value that was observed at the study center in New York was used. In the analysis of independent cohorts, the New York center was cohort 1, and three centers in Germany, Japan, and North Carolina composed cohort 2. Cohort 1 and subgroups within it were analyzed for additional outcomes, including transplantation-related death. RESULTS: We profiled 8767 fecal samples obtained from 1362 patients undergoing allogeneic hematopoietic-cell transplantation at the four centers. We observed patterns of microbiota disruption characterized by loss of diversity and domination by single taxa. Higher diversity of intestinal microbiota was associated with a lower risk of death in independent cohorts (cohort 1: 104 deaths among 354 patients in the higher-diversity group vs. 136 deaths among 350 patients in the lower-diversity group; adjusted hazard ratio, 0.71; 95% confidence interval [CI], 0.55 to 0.92; cohort 2: 18 deaths among 87 patients in the higher-diversity group vs. 35 deaths among 92 patients in the lower-diversity group; adjusted hazard ratio, 0.49; 95% CI, 0.27 to 0.90). Subgroup analyses identified an association between lower intestinal diversity and higher risks of transplantation-related death and death attributable to graft-versus-host disease. Baseline samples obtained before transplantation already showed evidence of microbiome disruption, and lower diversity before transplantation was associated with poor survival. CONCLUSIONS: Patterns of microbiota disruption during allogeneic hematopoietic-cell transplantation were similar across transplantation centers and geographic locations; patterns were characterized by loss of diversity and domination by single taxa. Higher diversity of intestinal microbiota at the time of neutrophil engraftment was associated with lower mortality. (Funded by the National Cancer Institute and others.).


Assuntos
Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas/mortalidade , Adulto , Biodiversidade , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Análise de Sobrevida , Transplante Homólogo/mortalidade
15.
Hepatology ; 75(4): 955-967, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34633706

RESUMO

BACKGROUND AND AIMS: Hispanics are disproportionately affected by NAFLD, liver fibrosis, cirrhosis, and HCC. Preventive strategies and noninvasive means to identify those in this population at high risk for liver fibrosis, are urgently needed. We aimed to characterize the gut microbiome signatures and related biological functions associated with liver fibrosis in Hispanics and identify environmental and genetic factors affecting them. APPROACH AND RESULTS: Subjects of the population-based Cameron County Hispanic Cohort (CCHC; n = 217) were screened by vibration-controlled transient elastography (FibroScan). Among them, 144 (66.7%) had steatosis and 28 (13.0%) had liver fibrosis. The gut microbiome of subjects with liver fibrosis was enriched with immunogenic commensals (e.g., Prevotella copri, Holdemanella, Clostridiaceae 1) and depleted of Bacteroides caccae, Parabacteroides distasonis, Enterobacter, and Marinifilaceae. The liver fibrosis-associated metagenome was characterized by changes in the urea cycle, L-citrulline biosynthesis and creatinine degradation pathways, and altered synthesis of B vitamins and lipoic acid. These metagenomic changes strongly correlated with the depletion of Parabacteroides distasonis and enrichment of Prevotella and Holdemanella. Liver fibrosis was also associated with depletion of bacterial pathways related to L-fucose biosynthesis. Alcohol consumption, even moderate, was associated with high Prevotella abundance. The single-nucleotide polymorphisms rs3769502 and rs7573751 in the NCK adaptor protein 2 (NCK2) gene positively associated with high Prevotella abundance. CONCLUSION: Hispanics with liver fibrosis display microbiome profiles and associated functional changes that may promote oxidative stress and a proinflammatory environment. These microbiome signatures, together with NCK2 polymorphisms, may have utility in risk modeling and disease prevention in this high-risk population.


Assuntos
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Bacteroidetes , Carcinoma Hepatocelular/complicações , Microbioma Gastrointestinal/genética , Hispânico ou Latino/genética , Humanos , Cirrose Hepática/complicações , Neoplasias Hepáticas/complicações , Hepatopatia Gordurosa não Alcoólica/complicações
16.
Blood ; 137(11): 1527-1537, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33512409

RESUMO

We previously described clinically relevant reductions in fecal microbiota diversity in patients undergoing allogeneic hematopoietic cell transplantation (allo-HCT). Recipients of high-dose chemotherapy and autologous HCT (auto-HCT) incur similar antibiotic exposures and nutritional alterations. To characterize the fecal microbiota in the auto-HCT population, we analyzed 1161 fecal samples collected from 534 adult recipients of auto-HCT for lymphoma, myeloma, and amyloidosis in an observational study conducted at 2 transplantation centers in the United States. By using 16S ribosomal gene sequencing, we assessed fecal microbiota composition and diversity, as measured by the inverse Simpson index. At both centers, the diversity of early pretransplant fecal microbiota was lower in patients than in healthy controls and decreased further during the course of transplantation. Loss of diversity and domination by specific bacterial taxa occurred during auto-HCT in patterns similar to those with allo-HCT. Above-median fecal intestinal diversity in the periengraftment period was associated with decreased risk of death or progression (progression-free survival hazard ratio, 0.46; 95% confidence interval, 0.26-0.82; P = .008), adjusting for disease and disease status. This suggests that further investigation into the health of the intestinal microbiota in auto-HCT patients and posttransplant outcomes should be undertaken.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transplante Homólogo
17.
Annu Rev Med ; 71: 137-148, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31986084

RESUMO

The microbiome is an integrated part of the human body that can modulate a variety of disease processes and affect prognosis, treatment response, complications, and outcomes. The importance of allogeneic hematopoietic cell transplantation in cancer treatment has resulted in extensive investigations on the interaction between the microbiome and this treatment modality. These investigations are beginning to lead to clinical trials of microbiome-targeted interventions. Here we review some of these discoveries and describe strategies being investigated to manipulate the microbiome for favorable outcomes, such as the proper selection and timing of antibiotics, type of diet and route of administration, probiotics, prebiotics, and fecal microbiota transplantation.


Assuntos
Antibacterianos/uso terapêutico , Bacteriemia/microbiologia , Infecções por Clostridium/microbiologia , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Doença Enxerto-Hospedeiro/microbiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Infecções Respiratórias/microbiologia , Biodiversidade , Disbiose/etiologia , Disbiose/terapia , Neutropenia Febril/tratamento farmacológico , Transplante de Microbiota Fecal , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Microbiota/fisiologia , Prebióticos , Probióticos , Transplante Homólogo
18.
Blood ; 136(4): 401-409, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32526029

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-SCT) offers cure for a variety of conditions, in particular, but not limited to, hematologic malignancies. However, it can be associated with life-threatening complications, including graft-versus-host disease (GVHD) and infections, which are factors limiting its widespread use. Technical advances in the field of microbiome research have allowed for a better understanding of the microbial flora of the human intestine, as well as dissection of their interactions with the host immune system in allo-SCT and posttransplant complications. There is growing evidence that the commensal microbiome is frequently dysregulated following allo-SCT and that this dysbiosis can predispose to adverse clinical outcomes, especially including acute intestinal GVHD and reduced overall survival. In this review, we discuss the interactions between the microbiome and the components of the immune system that play a major role in the pathways leading to the inflammatory state of acute intestinal GVHD. We also discuss the microbiome-centered strategies that have been devised or are actively being investigated to improve the outcomes of allo-SCT patients in regard to acute intestinal GVHD.


Assuntos
Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro/microbiologia , Neoplasias Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas , Doença Aguda , Disbiose , Doença Enxerto-Hospedeiro/etiologia , Humanos , Transplante Homólogo
19.
Blood ; 136(17): 1903-1906, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32756949

RESUMO

Graft-versus-host disease (GVHD) remains a major limitation of allogeneic hematopoietic stem cell transplantation. Only half of patients with severe acute GVHD respond to first-line treatment with corticosteroids and, for several decades, there was no optimal second-line treatment of patients with corticosteroid-refractory acute GVHD. Ruxolitinib was recently approved for the treatment of corticosteroid-refractory acute GVHD in adult and pediatric patients 12 years and older. Thus, it is important to define the patient population that would now be considered as refractory to ruxolitinib vs ruxolitinib dependent. Here, we propose to define ruxolitinib-refractory acute GVHD as disease that shows: (1) progression of GVHD compared with baseline after at least 5 to 10 days of treatment with ruxolitinib, based either on objective increase in stage/grade, or new organ involvement; (2) lack of improvement in GVHD (partial response or better) compared with baseline after ≥14 days of treatment with ruxolitinib; or (3) loss of response, defined as objective worsening of GVHD determined by increase in stage, grade, or new organ involvement at any time after initial improvement. GVHD manifestations that persist without improvement in patients who had a grade ≥3 treatment-emergent and ruxolitinib-attributed adverse event that did not resolve within 7 days of discontinuing ruxolitinib would serve as a clinical indication for additional treatment. In addition, absence of complete response or very good partial response at day 28 after ruxolitinib could be considered as an eligibility criterion.


Assuntos
Corticosteroides/uso terapêutico , Resistência a Medicamentos , Doença Enxerto-Hospedeiro/tratamento farmacológico , Terapia de Salvação , Terapias em Estudo , Doença Aguda , Adolescente , Adulto , Criança , Progressão da Doença , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Nitrilas , Prednisona/administração & dosagem , Prednisona/efeitos adversos , Pirazóis/uso terapêutico , Pirimidinas , Terapia de Salvação/métodos , Terapia de Salvação/tendências , Terapias em Estudo/métodos , Terapias em Estudo/tendências , Falha de Tratamento , Adulto Jovem
20.
BMC Cancer ; 22(1): 945, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050658

RESUMO

BACKGROUND: Gut microbiome community composition differs between cervical cancer (CC) patients and healthy controls, and increased gut diversity is associated with improved outcomes after treatment. We proposed that functions of specific microbial species adjoining the mucus layer may directly impact the biology of CC. METHOD: Metagenomes of rectal swabs in 41 CC patients were examined by whole-genome shotgun sequencing to link taxonomic structures, molecular functions, and metabolic pathway to patient's clinical characteristics. RESULTS: Significant association of molecular functions encoded by the metagenomes was found with initial tumor size and stage. Profiling of the molecular function abundances and their distributions identified 2 microbial communities co-existing in each metagenome but having distinct metabolism and taxonomic structures. Community A (Clostridia and Proteobacteria predominant) was characterized by high activity of pathways involved in stress response, mucus glycan degradation and utilization of degradation byproducts. This community was prevalent in patients with larger, advanced stage tumors. Conversely, community B (Bacteroidia predominant) was characterized by fast growth, active oxidative phosphorylation, and production of vitamins. This community was prevalent in patients with smaller, early-stage tumors. CONCLUSIONS: In this study, enrichment of mucus degrading microbial communities in rectal metagenomes of CC patients was associated with larger, more advanced stage tumors.


Assuntos
Microbioma Gastrointestinal , Neoplasias do Colo do Útero , Feminino , Microbioma Gastrointestinal/genética , Humanos , Redes e Vias Metabólicas , Metagenoma , Muco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA