Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PeerJ ; 10: e12869, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186472

RESUMO

To study the shape of objects using geometric morphometrics, landmarks are oftentimes collected digitally from a 3D scanned model. The expert may annotate landmarks using software that visualizes the 3D model on a flat screen, and interaction is achieved with a mouse and a keyboard. However, landmark annotation of a 3D model on a 2D display is a tedious process and potentially introduces error due to the perception and interaction limitations of the flat interface. In addition, digital landmark placement can be more time-consuming than direct annotation on the physical object using a tactile digitizer arm. Since virtual reality (VR) is designed to more closely resemble the real world, we present a VR prototype for annotating landmarks on 3D models. We study the impact of VR on annotation performance by comparing our VR prototype to Stratovan Checkpoint, a commonly used commercial desktop software. We use an experimental setup, where four operators placed six landmarks on six grey seal (Halichoerus grypus) skulls in six trials for both systems. This enables us to investigate multiple sources of measurement error. We analyse both for the configuration and for single landmarks. Our analysis shows that annotation in VR is a promising alternative to desktop annotation. We find that annotation precision is comparable between the two systems, with VR being significantly more precise for one of the landmarks. We do not find evidence that annotation in VR is faster than on the desktop, but it is accurate.


Assuntos
Crânio , Realidade Virtual , Software , Matemática
2.
Talanta ; 200: 415-423, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31036204

RESUMO

Five different zwitterionic sorbent coatings based on polymeric ionic liquids (PILs) were developed by the on fiber UV co-polymerization of the zwitterionic monomers 1-vinyl-3-(alkylsulfonate)imidazolium or 1-vinyl-3-(alkylcarboxylate)imidazolium and different dicationic ionic liquid (IL) crosslinkers. The developed sorbent coatings were applied in headspace solid-phase microextraction in combination with gas chromatography-mass spectrometry for the determination of short chain free fatty acids in wine. The sorbent coatings were found to extract these analytes via a non-competitive extraction mechanism. The methodology was optimized for the two best zwitterionic PIL coatings and compared to the commercially-available carboxen/polydimethylsiloxane (CAR/PDMS) and polyacrylate (PA) fibers. The sorbent coating based on the 1-vinyl-3-(propanesulfonate)imidazolium IL (Fiber 1) was more sensitive than PA while providing similar limits of detection to CAR/PDMS for the determination of analytes in a diluted synthetic wine sample. At the same time, Fiber 1 required lower extraction times (only 20 min versus 60 min for CAR/PDMS and 40 min for PA), exhibited higher reproducibility (with relative standard deviation lower than 8.9% for a spiked level of 7 µM) and was more tolerant to ethanol present within the sample. The zwitterionic PILs were also applied for the analysis of red wine, and the results were in agreement with those obtained for CAR/PDMS. The analytes were detected and quantified in the concentration range from 0.18 ±â€¯0.03 mg L-1 to 4.8 ±â€¯0.9 mg L-1, depending on the analyte and fiber.

3.
Anal Bioanal Chem ; 400(9): 2673-6, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21533803
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA