Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Soft Matter ; 20(3): 681-692, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38164983

RESUMO

The dynamics of phase separation for polymer blends is important in determining the final morphology and properties of polymer materials; in practical applications, this phase separation can be controlled by coupling to polymerization reaction kinetics via a process called 'polymerization-induced phase separation'. We develop a phase-field model for a polymer melt blend using a polymerizing Cahn-Hilliard (pCH) formalism to understand the fundamental processes underlying phase separation behavior of a mixture of two species independently undergoing linear step-growth polymerization. In our method, we explicitly model polydispersity in these systems to consider different molecular-weight components that will diffuse at different rates. We first show that this pCH model predicts results consistent with the Carothers predictions for step-growth polymerization kinetics, the Flory-Huggins theory of polymer mixing, and the classical predictions of spinodal decomposition in symmetric polymer blends. The model is then used to characterize (i) the competition between phase separation dynamics and polymerization kinetics, and (ii) the effect of unequal reaction rates between species. For large incompatibility between the species (i.e. high χ), our pCH model demonstrates that the strength for phase separation directly corresponds to the kinetics of phase separation. We find that increasing the reaction rate k̃, first induces faster phase separation but this trend reverses as we further increase k̃ due to the competition between molecular diffusion and polymerization. In this case, phase separation is delayed for faster polymerization rates due to the rapid accumulation of slow-moving, high molecular weight components.

2.
New Phytol ; 235(2): 743-758, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35403705

RESUMO

Hybridization and polyploidization are pivotal to plant evolution. Genetic crosses between distantly related species are rare in nature due to reproductive barriers but how such hurdles can be overcome is largely unknown. Here we report the hybrid genome structure of xBrassicoraphanus, a synthetic allotetraploid of Brassica rapa and Raphanus sativus. We performed cytogenetic analysis and de novo genome assembly to examine chromosome behaviors and genome integrity in the hybrid. Transcriptome analysis was conducted to investigate expression of duplicated genes in conjunction with epigenome analysis to address whether genome admixture entails epigenetic reconfiguration. Allotetraploid xBrassicoraphanus retains both parental chromosomes without genome rearrangement. Meiotic synapsis formation and chromosome exchange are avoided between nonhomologous progenitor chromosomes. Reconfiguration of transcription network occurs, and less divergent cis-elements of duplicated genes are associated with convergent expression. Genome-wide DNA methylation asymmetry between progenitors is largely maintained but, notably, B. rapa-originated transposable elements are transcriptionally silenced in xBrassicoraphanus through gain of DNA methylation. Our results demonstrate that hybrid genome stabilization and transcription compatibility necessitate epigenome landscape adjustment and rewiring of cis-trans interactions. Overall, this study suggests that a certain extent of genome divergence facilitates hybridization across species, which may explain the great diversification and expansion of angiosperms during evolution.


Assuntos
Brassicaceae , Genoma de Planta , Brassicaceae/genética , Metilação de DNA/genética , Hibridização Genética
3.
Curr Opin Plant Biol ; 76: 102484, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931549

RESUMO

Since the dawn of land plant evolution, pathogenic microbes have impacted plant health and threatened their survival. Though much of our knowledge on plant-pathogen interactions is derived from flowering plants, emerging research leveraging evolutionarily divergent non-vascular/non-seed bryophytes is beginning to shed light on the history and diversity of plant immune and infection processes. Here, we highlight key bryophyte-microbe pathosystems used to address fundamental questions on plant health. To this end, we outline the idea that core molecular aspects impacting plant infection and immunity are likely conserved across land plants. We discuss recent advances in the emerging field of Evo-MPMI (evolutionary molecular plant-microbe interactions) and highlight future opportunities that will clarify our understanding of the evolutionary framework that underpins host-pathogen interactions across the full spectrum of plant evolution.


Assuntos
Briófitas , Plantas , Plantas/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas , Fungos
4.
J Pers Med ; 13(10)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37888079

RESUMO

Cell-free DNA (cfDNA) screening for normal fetal aneuploidy has been widely adopted worldwide due to its convenience, non-invasiveness, and high positive predictive rate. We retrospectively evaluated 9327 Korean women with single pregnancies who underwent a non-invasive prenatal test (NIPT) to investigate how various factors such as maternal weight, age, and the method of conception affect the fetal fraction (FF). The average FF was 9.15 ± 3.31%, which decreased significantly as the maternal body mass index (BMI) increased (p < 0.001). The highly obese group showed a 'no-call' rate of 8.01%, which is higher than that of the normal weight group (0.33%). The FF was 8.74 ± 3.20% when mothers were in their 40s, and lower than that when in their 30s (9.23 ± 3.34, p < 0.001) and in the natural pregnancy group (9.31% ± 3.33). The FF of male fetuses was observed to be approximately 2.76% higher on average than that of female fetuses. As the gestational age increased, there was no significant increase in the fraction of fetuses up to 21 weeks compared to that at 10-12 weeks, and a significant increase was observed in the case of 21 weeks or more. The FFs in the NIPT high-risk result group compared to that in the low-risk group were not significantly different (p = 0.62). In conclusion, BMI was the factor most associated with the fetal fraction. Although the NIPT is a highly prevalent method in prenatal analysis, factors affecting the fetal fraction should be thoroughly analyzed to obtain more accurate results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA