Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 706: 149728, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38479246

RESUMO

Influenza A virus is the cause of a widespread human disease with high morbidity and mortality rates. The influenza virus encodes non-structural protein 1 (NS1), an exceedingly multifunctional virulence component. NS1 plays essential roles in viral replication and evasion of the cellular innate immune system. Protein kinase RNA-activated also known as protein kinase R (PKR) phosphorylates translation initiation factor eIF-2α on serine 51 to inhibit protein synthesis in virus-infected mammalian cells. Consequently, PKR activation inhibits mRNA translation, which results in the assert of both viral protein synthesis and cellular and possibly apoptosis in response to virus infection. Host signaling pathways are important in the replication of influenza virus, but the mechanisms involved remain to be characterized. Herein, the structure of NS1 and PKR complex was determined using Cryo-EM. We found the N91, E94, and G95 residues of PKR bind directly with N188, D125, and K126, respectively, of NS1. Furthermore, the study shows that PKR peptide offers a potential treatment for Influenza A virus infections.


Assuntos
Vírus da Influenza A , eIF-2 Quinase , Animais , Humanos , eIF-2 Quinase/metabolismo , Proteínas não Estruturais Virais/química , Vírus da Influenza A/genética , Microscopia Crioeletrônica , Linhagem Celular , Antivirais/metabolismo , Replicação Viral , Mamíferos/metabolismo
2.
Biochem Biophys Res Commun ; 726: 150306, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38917634

RESUMO

The folate metabolism enzyme ALDH1L1 catalyzed 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Non-small cell lung cancer cells (NSCLC) strongly express ALDH1L1. Gossypol binds to an allosteric site and disrupts the folate metabolism by preventing NADP+ binding. The Cryo-EM structures of tetrameric C-terminal aldehyde dehydrogenase human ALDH1L1 complex with gossypol were examined. Gossypol-bound ALDH1L1 interfered with NADP+ by shifting the allosteric site of the structural conformation, producing a closed-form NADP+ binding site. In addition, the inhibition activity of ALDH1L1 was targeted with gossypol in NSCLC. The gossypol treatment had anti-cancer effects on NSCLC by blocking NADPH and ATP production. These findings emphasize the structure characterizing ALDH1L1 with gossypol.

3.
Biochem Biophys Res Commun ; 697: 149544, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38245927

RESUMO

T-cell immunoglobulin and mucin protein 3 (Tim-3), also known as Hepatitis A virus cellular receptor 2, has been discovered to have a negative regulatory effect on murine T-cell responses. Galectin-9 exhibits various biological effects, including cell aggregation, eosinophil chemoattraction, activation, and apoptosis, observed in murine thymocytes, T-cells, and human melanoma cells. Such approach demonstrated that Galectin-9 acts as a binding partner on Tim-3 and mediates the T-cell inhibitory effects. Tl-gal is a homologous protein to galectin-9, isolated from the adult stage of the canine gastrointestinal nematode parasite Toxascaris leonina. However, molecular mechanism between Tim-3 and galectin-9 is still remain unknown. Here, we describe the cryo-electron microscopy and X-ray structures and interactions of the Tim-3 and Tl-gal complex as well as their biochemical and biophysical characterization. In the structure, Ser46 residue of Tl-gal NCRD was bound to Asp25 residue of hTim-3. Compared to our previous study, the binding site of the complex is the same as the sugar binding site (the Ser46 residue) of Tl-gal. In addition, analysis of the complex structure revealed that the four Tl-gal molecules were in an open form packing and one mTim-3 peptide was bound to one Tl-gal molecule. These observations suggest that how Tl-gal binds hTim3 is essential to understanding the molecular mechanism for the Tim-3-galectin 9 interaction that regulates immune responses. This could potentially serve as a therapeutic target for inflammatory diseases.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Toxascaris , Adulto , Camundongos , Animais , Humanos , Cães , Toxascaris/química , Toxascaris/metabolismo , Microscopia Crioeletrônica , Galectinas/metabolismo , Imunoglobulinas , Mucinas
4.
Biochem Biophys Res Commun ; 641: 27-33, 2023 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-36516586

RESUMO

KRAS mutations occur in a quarter of all human cancers. When activated in its GTP-bound form, RAS stimulates diverse cellular systems, such as cell division, differentiation, growth, and apoptosis through the activations of various signaling pathways, which include mitogen-activated protein kinase (MAPK), phosphoinositide 3 kinases (PI3K), and RAL-GEFs pathways. We found that GJ101 (65LYDVA69) binds directly to the KRAS mutant (G12V) and showed tumor-suppressive activity. In addition, the GJ101 peptide inhibited KRAS mutant as determined by a [α-32P] guanosine triphosphate (GTP) binding assay and suppressed pancreatic cell line in a cell proliferation assay. Herein, the complex structure of KRAS and GJ101 was clarified by X-ray crystallography. Isothermal titration calorimetry showed that GJ101 binds highly with KRAS mutant and the complex structure of KRAS G12V.GJ101 complex presented that the residue of Q61 directly interacted with L65 of GJ101. Overall, the results suggest GJ101 be considered a developmental starting point for KRAS G12V inhibitor.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Linhagem Celular , Mutação , Guanosina Trifosfato/metabolismo , Linhagem Celular Tumoral
5.
Biochem Biophys Res Commun ; 665: 1-9, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37146409

RESUMO

E3L (RNA-binding protein E3) is one of the key IFN resistance genes encoded by VV and consists of 190 amino acids with a highly conserved carboxy-terminal double-stranded RNA-binding domain (dsRBD). PKR (dsRNA-dependent protein kinase) is an IFN-induced protein involved in anti-cell and antiviral activity. PKR inhibits the initiation of translation through alpha subunit of the initiation factor eIF2 (eIF2α) and mediates several transcription factors such as NF-κB, p53 or STATs. Activated PKR also induces apoptosis in vaccinia virus infection. E3L is required for viral IFN resistance and directly binds to PKR to block activation of PKR. In this work, we determined the three-dimensional complex structure of E3L and PKR using cryo-EM and determined the important residues involved in the interaction. In addition, PKR peptide binds to E3L and can increase protein levels of phosphorus-PKR and phosphorus-eIF2α-induced cell apoptosis through upregulation of phosphorus-PKR in HEK293 cells. Taken together, structural insights into E3L and PKR will provide a new optimization and development of vaccinia virus drugs.


Assuntos
Vaccinia virus , Proteínas Virais , Humanos , eIF-2 Quinase/metabolismo , Células HEK293 , Fosforilação , RNA de Cadeia Dupla , Vaccinia virus/genética , Proteínas Virais/metabolismo
6.
Biochem Biophys Res Commun ; 548: 39-46, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33631672

RESUMO

PUMA (p53-upregulated modulator of apoptosis) is localized in mitochondria and a direct target in p53-mediated apoptosis. p53 elicits mitochondrial apoptosis via transcription-dependent and independent mechanisms. p53 is known to induce apoptosis via the transcriptional induction of PUMA, which encodes proapoptotic BH3-only members of the Bcl-2 protein family. However, the transcription-independent mechanisms of human PUMA remain poorly defined. For example, it is not known whether PUMA interacts directly with the DNA binding domain (DBD: residues 92-293) of p53 in vitro. Here, the structure of the complex between the DBD of p53 and PUMA peptide was elucidated by X-ray crystallography. Isothermal titration calorimetry showed that PUMA peptide binds strongly with p53 DBD, and the crystal structure of p53-PUMA peptide complex revealed it contains four molecules of p53 DBD and one PUMA peptide per asymmetric unit in space group P1. PUMA peptide bound to the N-terminal residues of p53 DBD. A cell proliferation assay demonstrated PUMA peptide inhibited the growth of a lung cancer cell line. These results contribute to understanding of the mechanism responsible for p53-mediated apoptosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , DNA/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/química , Calorimetria , Humanos , Ligação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas/química , Eletricidade Estática , Zinco/metabolismo
7.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199060

RESUMO

Receptor for advanced glycation end-products (RAGE) is a member of the immunoglobulin superfamily. RAGE binds and mediates cellular responses to a range of DAMPs (damage-associated molecular pattern molecules), such as AGEs, HMGB1, and S100/calgranulins, and as an innate immune sensor, can recognize microbial PAMPs (pathogen-associated molecular pattern molecules), including bacterial LPS, bacterial DNA, and viral and parasitic proteins. RAGE and its ligands stimulate the activations of diverse pathways, such as p38MAPK, ERK1/2, Cdc42/Rac, and JNK, and trigger cascades of diverse signaling events that are involved in a wide spectrum of diseases, including diabetes mellitus, inflammatory, vascular and neurodegenerative diseases, atherothrombosis, and cancer. Thus, the targeted inhibition of RAGE or its ligands is considered an important strategy for the treatment of cancer and chronic inflammatory diseases.


Assuntos
Descoberta de Drogas , Terapia de Alvo Molecular , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Suscetibilidade a Doenças , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Ligantes , Modelos Moleculares , Polimorfismo Genético , Isoformas de Proteínas , Receptor para Produtos Finais de Glicação Avançada/química , Receptor para Produtos Finais de Glicação Avançada/genética , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
8.
Int J Mol Sci ; 22(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066808

RESUMO

Amyloid precursor protein (APP) is a type 1 transmembrane glycoprotein, and its homologs amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are highly conserved in mammals. APP and APLP are known to be intimately involved in the pathogenesis and progression of Alzheimer's disease and to play important roles in neuronal homeostasis and development and neural transmission. APP and APLP are also expressed in non-neuronal tissues and are overexpressed in cancer cells. Furthermore, research indicates they are involved in several cancers. In this review, we examine the biological characteristics of APP-related family members and their roles in cancer.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Neoplasias/metabolismo , Precursor de Proteína beta-Amiloide/química , Animais , Humanos , Modelos Biológicos , Processamento de Proteína Pós-Traducional
9.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921888

RESUMO

The influenza virus causes human disease on a global scale and significant morbidity and mortality. The existing vaccination regime remains vulnerable to antigenic drift, and more seriously, a small number of viral mutations could lead to drug resistance. Therefore, the development of a new additional therapeutic small molecule-based anti-influenza virus is urgently required. The NS1 influenza gene plays a pivotal role in the suppression of host antiviral responses, especially by inhibiting interferon (IFN) production and the activities of antiviral proteins, such as dsRNA-dependent serine/threonine-protein kinase R (PKR) and 2'-5'-oligoadenylate synthetase (OAS)/RNase L. NS1 also modulates important aspects of viral RNA replication, viral protein synthesis, and virus replication cycle. Taken together, small molecules that target NS1 are believed to offer a means of developing new anti-influenza drugs.


Assuntos
Antivirais/química , Antivirais/farmacologia , Proteínas não Estruturais Virais/metabolismo , Animais , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Influenza Humana/virologia , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Replicação Viral/fisiologia
10.
Biochem Biophys Res Commun ; 498(1): 9-17, 2018 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-29499196

RESUMO

Cystein protease plays a critical role as a virulence factor in the development and progression of various diseases. Cystatin is a superfamily of cysteine protease inhibitors that participates in various physiological and pathological processes. The cysteine protease inhibitor CsStein-1 isolated from Clonorchis sinensis belongs to the type 1 stefin of cystatins. This inhibitor regulates the activity and processing of CsCF (Cathepsin F of Clonorchis sienesis), which plays an important role in parasite nutrition and host-parasite interaction. CsStefin-1 has also been proposed as a host immune modulator and a participant in the mechanism associated with anti-inflammatory ability. Here, we report the first crystal structure of CsStefin-1 determined by the multi-wavelength anomalous diffraction (MAD) method to 2.3 Å. There are six molecules of CsStefin-1 per asymmetric unit, with a solvent content of 36.5%. The structure of CsStefin-1 is composed of twisted four-stranded antiparallel ß-sheets, a central α-helix, and a short α-helix. We also demonstrate that CsStefin-1 binds to CsCF-8 cysteine protease and inhibits its activity. In addition, a molecular docking model of CsStefin-1 and CsCF-8 was developed using homology modeling based on their structures. The structural information regarding CsStefin-1 and molecular insight into its interaction with CsCF-8 are important to understanding their biological function and to design of inhibitors that modulate cysteine protease activity.


Assuntos
Clonorchis sinensis/química , Cistatinas/química , Inibidores de Cisteína Proteinase/química , Sequência de Aminoácidos , Animais , Catepsina F/antagonistas & inibidores , Catepsina F/metabolismo , Cristalização , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica
11.
J Biol Chem ; 291(49): 25326-25338, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27742836

RESUMO

Toxascaris leonina galectin (Tl-gal) is a galectin-9 homologue protein isolated from an adult worm of the canine gastrointestinal nematode parasite, and Tl-gal-vaccinated challenge can inhibit inflammation in inflammatory bowel disease-induced mice. We determined the first X-ray structures of full-length Tl-gal complexes with carbohydrates (lactose, N-acetyllactosamine, lacto-N-tetraose, sialyllactose, and glucose). Bonds were formed on concave surfaces of both carbohydrate recognition domains (CRDs) in Tl-gal. All binding sites were found in the HXXXR and WGXEER motifs. Charged Arg61/Arg196 and Glu80/Glu215 on the conserved motif of Tl-gal N-terminal CRD and C-terminal CRD are critical amino acids for recognizing carbohydrate binding, and the residues can affect protein folding and structure. The polar amino acids His, Asn, and Trp are also important residues for the interaction with carbohydrates through hydrogen bonding. Hemagglutination activities of Tl-gal were inhibited by interactions with carbohydrates and mutations. We found that the mutation of Tl-gal (E80A/E215A) at the carbohydrate binding region induced protein aggregation and could be caused in many diseases. The short linker region between the N-terminal and C-terminal CRDs of Tl-gal was very stable against proteolysis and maintained its biological activity. This structural information is expected to elucidate the carbohydrate recognition mechanism of Tl-gal and improve our understanding of anti-inflammatory mediators and modulators of immune response.


Assuntos
Anti-Inflamatórios/química , Galectinas/química , Proteínas de Helminto/química , Toxascaris/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Carboidratos/química , Cães , Galectinas/genética , Proteínas de Helminto/genética , Camundongos , Mutação de Sentido Incorreto , Toxascaris/genética
12.
Biochem Biophys Res Commun ; 491(2): 257-264, 2017 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-28743497

RESUMO

Ras proteins are small GTPases that serve as master moderators of a large number of signaling pathways involved in various cellular processes. Activating mutations in Ras are found in about one-third of cancers. H-REV107, a K-Ras binding protein, plays an important role in determining K-Ras function. H-REV107 is a member of the HREV107 family of class II tumor suppressor genes and a growth inhibitory Ras target gene that suppresses cellular growth, differentiation, and apoptosis. Expression of H-REV107 was strongly reduced in about 50% of human carcinoma cell lines. However, the specific molecular mechanism by which H-REV107 inhibits Ras is still unknown. In the present study, we suggest that H-REV107 forms a strong complex with activating oncogenic mutation Q61H K-Ras from various biochemical binding assays and modeled structures. In addition, the interaction sites between K-Ras and H-REV107 were predicted based on homology modeling. Here, we found that some structure-based mutants of the K-Ras disrupted the complex formation with H-REV107. Finally, a novel molecular mechanism describing K-Ras and H-REV107 binding is suggested and insights into new K-Ras effector target drugs are provided.


Assuntos
Simulação de Acoplamento Molecular , Fosfolipases A2 Independentes de Cálcio/química , Proteínas Proto-Oncogênicas p21(ras)/química , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Cinética , Mutação , Fosfolipases A2 Independentes de Cálcio/genética , Fosfolipases A2 Independentes de Cálcio/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
13.
Plant Cell Rep ; 34(2): 223-31, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25344007

RESUMO

KEY MESSAGE: AtERF71/HRE2 binds to GCC box or DRE/CRT as transcription activator and plays an important role in root development via root cell expansion regulation. AtERF71/HRE2 transcription factor, a member of the AP2/ERF family, plays a key role in the stress response. GCC box and DRE/CRT, both essential cis-acting elements, have been shown to be recognized by AP2/ERF family transcription factors. However, it remains unclear whether or not AtERF71/HRE2 directly interacts with GCC box and/or DRE/CRT. Here, we showed that AtERF71/HRE2 binds to GCC box and DRE/CRT by electrophoretic mobility shift assay (EMSA). Binding of AtERF71/HRE2 to GCC box and DRE/CRT was also detected by fluorescence measurement and surface plasmon resonance spectroscopy (BIAcore) experiments. Folding properties of AtERF71/HRE2 proteins were characterized by CD spectroscopy, and AtERF71/HRE2 showed thermal stability as evidenced by two endothermic peaks (T d) at 53 and 65 °C. In addition, AtERF71/HRE2 showed transcriptional activation activity via GCC box and DRE/CRT in Arabidopsis protoplasts. Interestingly, AtERF71/HRE2 OXs showed increased primary root length due to elevated root cell expansion. Our data indicate that AtERF71/HRE2 binds to both GCC box and DRE/CRT, transactivates expression of genes downstream via GCC box or DRE/CRT, and plays an important role in root development through regulation of root cell expansion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proliferação de Células , Ensaio de Desvio de Mobilidade Eletroforética , Motivos de Nucleotídeos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Ligação Proteica , Protoplastos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Transcrição/genética
14.
Biochim Biophys Acta ; 1834(1): 292-300, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22922561

RESUMO

Fas-associated death domain (FADD) protein is an adapter molecule that bridges the interactions between membrane death receptors and initiator caspases. The death receptors contain an intracellular death domain (DD) which is essential to the transduction of the apoptotic signal. The kinase receptor-interacting protein 1 (RIP1) is crucial to programmed necrosis. The cell type interplay between FADD and RIP1, which mediates both necrosis and NF-κB activation, has been evaluated in other studies, but the mechanism of the interaction of the FADD and RIP1 proteins remain poorly understood. Here, we provided evidence indicating that the DD of human FADD binds to the DD of RIP1 in vitro. We developed a molecular docking model using homology modeling based on the structures of FADD and RIP1. In addition, we found that two structure-based mutants (G109A and R114A) of the FADD DD were able to bind to the RIP1 DD, and two mutations (Q169A and N171A) of FADD DD and four mutations (G595, K596, E620, and D622) of RIP1 DD disrupted the FADD-RIP1 interaction. Six mutations (Q169A, N171A, G595, K596, E620, and D622) lowered the stability of the FADD-RIP1 complex and induced aggregation that structurally destabilized the complex, thus disrupting the interaction.


Assuntos
Proteína de Domínio de Morte Associada a Fas/química , Simulação de Acoplamento Molecular , Complexos Multiproteicos/química , Complexo de Proteínas Formadoras de Poros Nucleares/química , Proteínas de Ligação a RNA/química , Substituição de Aminoácidos , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação de Sentido Incorreto , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
15.
Biochem Biophys Res Commun ; 443(4): 1155-61, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24361886

RESUMO

Apoptosis can be induced by an extrinsic pathway involving the ligand-mediated activation of death receptors such as tumor necrosis factor receptor-1 (TNFR-1). TNFR-1-associated death domain (TRADD) protein is an adapter molecule that bridges the interaction between TNFR-1 and receptor-interacting serine/threonine-protein kinase 1 (RIP1). However, the molecular mechanism of the complex formation of these proteins has not yet been identified. Here, the binding among TNFR-1, TRADD, and RIP1 was identified using a GST pull-down assay and Biacore biosensor experiment. This study showed that structural characterization and formation of the death-signaling complex could be predicted using TNFR-1, TRADD, and RIP1. In addition, we found that the structure-based mutations of TNFR-1 (P367A and P368A), TRADD (F266A), and RIP1 (M637A and R638A) disrupted formation of the death domain (DD) complex and prevented stable interactions among those DDs.


Assuntos
Proteína Serina-Treonina Quinases de Interação com Receptores/química , Receptores Tipo I de Fatores de Necrose Tumoral/química , Proteína de Domínio de Morte Associada a Receptor de TNF/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Apoptose , Técnicas Biossensoriais , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Eletricidade Estática , Proteína de Domínio de Morte Associada a Receptor de TNF/genética , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo
16.
Biochem Biophys Res Commun ; 449(4): 425-31, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24858685

RESUMO

Periostin appears to be a unique extracellular protein secreted by fibroblasts that is upregulated following injury to the heart or changes in the environment. Periostin has the ability to associate with other critical extracellular matrix (ECM) regulators such as TGF-ß, tenascin, and fibronectin, and is a critical regulator of fibrosis that functions by altering the deposition and attachment of collagen. Periostin is known to be highly expressed in carcinoma cells, but not in normal breast tissues. The protein has a structural similarity to insect fasciclin-1 (Fas 1) and can be induced by transforming growth factor-ß (TGF-ß) and bone morphogenetic protein (BMP)-2. To investigate the molecular interaction of periostin and bone morphogenetic protein, we modeled these three-dimensional structures and their binding sites. We demonstrated direct interaction between periostin and BMP1/2 in vitro using several biochemical and biophysical assays. We found that the structures of the first, second, and fourth Fas1 domains in periostin are similar to that of the fourth Fas 1 domain of TGFBIp. However, the structure of the third Fas 1 domain in periostin is different from those of the first, second, and fourth Fas1 domains, while it is similar to the NMR structure of Fasciclin-like protein from Rhodobacter sphaeroides. These results will useful in further functional analysis of the interaction of periostin and bone morphogenetic protein.


Assuntos
Proteína Morfogenética Óssea 1/química , Proteína Morfogenética Óssea 2/química , Moléculas de Adesão Celular/química , Sítios de Ligação , Proteínas Morfogenéticas Ósseas/metabolismo , Colágeno/metabolismo , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína , Alinhamento de Sequência
17.
BMB Rep ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835119

RESUMO

Regulation of cell fate and lung cell differentiation is associated with Aminoacyl-tRNA synthetases (ARS)-interacting multifunctional protein 2 (AIMP2), which acts as a non-enzymatic component required for the multi-tRNA synthetase complex. In response to DNA damage, a component of AIMP2 separates from the multi-tRNA synthetase complex, binds to p53, and prevents its degradation by MDM2, inducing apoptosis. Additionally, AIMP2 reduces proliferation in TGF-ß and Wnt pathways, while enhancing apoptotic signaling induced by tumor necrosis factor- α. Given the crucial role of these pathways in tumorigenesis, AIMP2 is expected to function as a broad-spectrum tumor suppressor. The full-length AIMP2 transcript consists of four exons, with a small section of the pre-mRNA undergoing alternative splicing to produce a variant (AIMP2-DX2) lacking the second exon. AIMP2-DX2 binds to FBP, TRAF2, and p53 similarly to AIMP2, but competes with AIMP2 for binding to these target proteins, thereby impairing its tumor-suppressive activity. AIMP2-DX2 is specifically expressed in a diverse range of cancer cells, including breast cancer, liver cancer, bone cancer, and stomach cancer. There is growing interest in AIMP2-DX2 as a promising biomarker for prognosis and diagnosis, with AIMP2-DX2 inhibition attracting significant interest as a potentially effective therapeutic approach for the treatment of lung, ovarian, prostate, and nasopharyngeal cancers.

18.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 2): 168-75, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23385453

RESUMO

The full-length crystal structure of Toxascaris leonine galectin (Tl-gal), a galectin-9 homologue protein, was determined at a resolution of 2.0 Å. Galectin-9 exhibits a variety of biological functions, including cell aggregation, eosinophil chemoattraction, activation and apoptosis of murine thymocytes, T cells and human melanoma cells. Similar to this galectin, Tl-gal may function as a regulatory molecule in the host immune system; however, no molecular or structural information has been reported for Tl-gal. Moreover, until now, there have been no reports of a full-length galectin structure. There are two molecules of Tl-gal per asymmetric unit in space group P2(1)2(1)2(1), and the N-terminal and C-terminal carbohydrate-recognition domains (NCRD and CCRD) of Tl-gal are composed of six-stranded ß-sheets and five-stranded ß-sheets with a short α-helix. The NCRD of Tl-gal resembles that of human galectin-7 and its CCRD resembles human galectin-9, but the residues in the interface and loop regions of the NCRD and CCRD are flexible and are related to interaction. Engagement of the T-cell immunoglobulin mucin-3 (Tim-3) immunoglobulin variable (IgV) domain by a galectin-9 ligand is known to be important for appropriate termination of T-helper 1 immune responses. To investigate the binding site of Tl-gal, the interaction between Tl-gal and Tim-3 was modelled. Tim-3 is docked into a major groove of the Tl-gal structure, which is larger and deeper than the minor groove. The structural information presented here will provide insight into the development of novel anti-inflammatory agents or selective modulators of immune response.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Carboidratos/química , Galectinas/química , Toxascaris/química , Sequência de Aminoácidos , Animais , Carboidratos/fisiologia , Cristalografia por Raios X , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína
19.
Biochim Biophys Acta ; 1814(12): 1891-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21821154

RESUMO

In the intestinal epithelium, the CDX1 and CDX2 homeodomain genes play proliferative and tumor suppressor roles, respectively. The transcription factor DNA replication-related element binding factor (DREF), is an 80kDa polypeptide homodimer that plays an important role in regulating cell proliferation-related genes. Homeodomain genes encode DNA-binding proteins that play crucial roles during development by defining the body plan and determining cell fate. However, until now, the regulation of DREF function by caudal-related homeodomain proteins is poorly understood. In this study, recombinant CDX1/2 homeodomains (CDX1, amino acids [aa] 152-216 and CDX2, aa 184-248) and the DNA-binding domain of Drosophila DREF (dDREF; aa 1-125) were isolated in order to investigate the regulatory mechanism of their interaction. The expression and purification of the truncated CDX1/2 and DREF proteins were successfully performed in Escherichia coli. Models of the CDX1/2 homeodomain and dDREF were constructed using SWISS-MODEL software, a program for relative protein structure modeling. The binding of CDX1/2 and DREF proteins was detected by fluorescence measurement, size-exclusion column (SEC) chromatography, His-tagged pull-down assay, and surface plasmon resonance spectroscopy (BIAcore). In addition, we identified that four different mutants of CDX1 (S185A, N190A, T194A, and V212A) were bound to dDREF with different degrees of interaction. Our results indicate that CDX1/2 homeodomains interact with the DNA-binding domain of dDREF, thereby regulating its transcription activity.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Homeodomínio/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Fator de Transcrição CDX2 , Clonagem Molecular , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência , Espectrometria de Fluorescência , Temperatura , Transativadores/química , Fatores de Transcrição/química , Fatores de Transcrição/genética
20.
Biochem Biophys Res Commun ; 420(2): 350-6, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22446329

RESUMO

The p53-upregulated modulator of apoptosis (Puma) and Noxa, are direct targets in p53-mediated apoptosis localized to the mitochondria. Tumor suppressor p53 induces apoptosis by transcriptional induction of Puma and Noxa, which encode proapoptotic BH3-only member Bcl-1 family proteins. However, at a molecular level, the mechanism of action of Puma and Noxa proteins remain poorly defined. In addition, there have been no reports on whether or not p53 directly interacts with Puma and Noxa, in vitro. Here, we provide evidence indicating that the DNA binding domain (DBD) of p53 directly interacted with the BH3 domains of human PUMA and NOXA. Our studies revealed that PUMA has a weak affinity for p53, but NOXA has significant affinity for p53. In this study, we developed a molecular docking model using homology modeling based on the structures of truncated p53, PUMA and NOXA. In addition, we investigated whether or not six mutants of p53 (K101A, T102A, L111A, D186A, G199A and S227A) were able to bind to PUMA and NOXA. Four structure-based mutations (T102A, L111A, D186A and G199A) disrupted the p53-PUMA/NOXA interaction. Our study suggested that these four mutations lowered the stability of the p53 DBD domain and induced aggregation of structurally destabilized p53, and thus disrupted the p53-PUMA/NOXA interaction.


Assuntos
Proteínas Reguladoras de Apoptose/química , DNA/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas/química , Proteína Supressora de Tumor p53/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Mutação , Ligação Proteica , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA