Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 17(23): 24268-24281, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38044586

RESUMO

Direct optical printing of functional inorganics shows tremendous potential as it enables the creation of intricate two-dimensional (2D) patterns and affordable design and production of various devices. Although there have been recent advancements in printing processes using short-wavelength light or pulsed lasers, the precise control of the vertical thickness in printed 3D structures has received little attention. This control is vital to the diverse functionalities of inorganic thin films and their devices, as they rely heavily on their thicknesses. This lack of research is attributed to the technical intricacy and complexity involved in the lithographic processes. Herein, we present a generalized optical 3D printing process for inorganic nanoparticles using maskless digital light processing. We develop a range of photocurable inorganic nanoparticle inks encompassing metals, semiconductors, and oxides, combined with photolinkable ligands and photoacid generators, enabling the direct solidification of nanoparticles in the ink medium. Our process creates complex and large-area patterns with a vertical resolution of ∼50 nm, producing 50-nm-thick 2D films and several micrometer-thick 3D architectures with no layer height difference via layer-by-layer deposition. Through fabrication and operation of multilayered switching devices with Au electrodes and Ag-organic resistive layers, the feasibility of our process for cost-effective manufacturing of multilayered devices is demonstrated.

2.
Nat Commun ; 13(1): 5262, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071063

RESUMO

Optical three-dimensional (3D) printing techniques have attracted tremendous attention owing to their applicability to mask-less additive manufacturing, which enables the cost-effective and straightforward creation of patterned architectures. However, despite their potential use as alternatives to traditional lithography, the printable materials obtained from these methods are strictly limited to photocurable resins, thereby restricting the functionality of the printed objects and their application areas. Herein, we report a generalised direct optical printing technique to obtain functional metal chalcogenides via digital light processing. We developed universally applicable photocurable chalcogenidometallate inks that could be directly used to create 2D patterns or micrometre-thick 2.5D architectures of various sizes and shapes. Our process is applicable to a diverse range of functional metal chalcogenides for compound semiconductors and 2D transition-metal dichalcogenides. We then demonstrated the feasibility of our technique by fabricating and evaluating a micro-scale thermoelectric generator bearing tens of patterned semiconductors. Our approach shows potential for simple and cost-effective architecturing of functional inorganic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA