Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am Surg ; 86(9): 1124-1128, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32841047

RESUMO

INTRODUCTION: Traumatic brain injury (TBI) remains a significant cause of morbidity and mortality. The purpose of this study is to examine outcomes after discharge and identify factors from the index admission that may contribute to long-term mortality. METHODS: The study population is composed of patients who survived to discharge from a previously published study examining TBI. Demographics, injury severity, and length of stay were abstracted from the index study. Phone surveys of surviving patients were performed to evaluate each patient's Glasgow Outcome Scale-Extended (GOSE). Patients who were deceased at the time of the survey were compared with those who were alive. RESULTS: 1615 patients were alive at the end of the first study period and 211 (13%) comprised the study population. Overall, the median age was 54 years, and the majority were male (74%). The median time to follow-up was 80 months. The population was severely injured, with a median injury severity score (ISS) of 25 and a median head abbreviated injury score (AIS) of 4. Overall mortality was 57%. The group that survived at the time of the survey was younger, more injured, less likely to have received beta-blockers (BB) during the index admission, and had a longer time to follow-up. After adjusting for ISS, age, base deficit, and BB, age was the only variable predictive of mortality (HR 1.03; HL 1.02-1.04). CONCLUSION: Despite being more severely injured, younger patients were more likely to survive to follow-up. Further investigation is needed to determine if aggressive care in older TBI patients in the acute phase leads to good long-term outcomes.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Centros de Traumatologia , Adulto , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/mortalidade , Feminino , Seguimentos , Humanos , Escala de Gravidade do Ferimento , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida/tendências , Fatores de Tempo , Estados Unidos/epidemiologia
2.
Biochem J ; 408(1): 19-28, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17688424

RESUMO

Periplasmic SER (selenate reductase) from Thauera selenatis is classified as a member of the Tat (twin-arginine translocase)-translocated (Type II) molybdoenzymes and comprises three subunits each containing redox cofactors. Variable-temperature X-band EPR spectra of the purified SER complex showed features attributable to centres [3Fe-4S]1+, [4Fe-4S]1+, Mo(V) and haem-b. EPR-monitored redox-potentiometric titration of the SerABC complex (SerA-SerB-SerC, a hetero-trimetric complex of alphabetagamma subunits) revealed that the [3Fe-4S] cluster (FS4, iron-sulfur cluster 4) titrated as n=1 Nernstian component with a midpoint redox potential (E(m)) of +118+/-10 mV for the [3Fe-4S]1+/0 couple. A [4Fe-4S]1+ cluster EPR signal developed over a range of potentials between 300 and -200 mV and was best fitted to two sequential Nernstian n=1 curves with midpoint redox potentials of +183+/-10 mV (FS1) and -51+/-10 mV (FS3) for the two [4Fe-4S]1+/2+ cluster couples. Upon further reduction, the observed signal intensity of the [4Fe-4S]1+ cluster decreases. This change in intensity can again be fitted to an n=1 Nernstian component with a midpoint potential (E(m)) of about -356 mV (FS2). It is considered likely that, at low redox potential (E(m) less than -300 mV), the remaining oxidized cluster is reduced (spin S=1/2) and strongly spin-couples to a neighbouring [4Fe-4S]1+ cluster rendering both centres EPR-silent. The involvement of both [3Fe-4S] and [4Fe-4S] clusters in electron transfer to the active site of the periplasmic SER was demonstrated by the re-oxidation of the clusters under anaerobic selenate turnover conditions. Attempts to detect a high-spin [4Fe-4S] cluster (FS0) in SerA at low temperature (5 K) and high power (100 mW) were unsuccessful. The Mo(V) EPR recorded at 60 K, in samples poised at pH 6.0, displays principal g values of g3 approximately 1.999, g2 approximately 1.996 and g1 approximately 1.965 (g(av) 1.9867). The dominant features at g2 and g3 are not split, but hyperfine splitting is observed in the g1 region of the spectrum and can be best simulated as arising from a single proton with a coupling constant of A1 (1H)=1.014 mT. The presence of the haem-b moiety in SerC was demonstrated by the detection of a signal at g approximately 3.33 and is consistent with haem co-ordinated by methionine and lysine axial ligands. The combined evidence from EPR analysis and sequence alignments supports the assignment of the periplasmic SER as a member of the Type II molybdoenzymes and provides the first spectro-potentiometric insight into an enzyme that catalyses a key reductive reaction in the biogeochemical selenium cycle.


Assuntos
Citoplasma/enzimologia , Oxirredutases/química , Oxirredutases/metabolismo , Thauera/enzimologia , Espectroscopia de Ressonância de Spin Eletrônica , Heme/química , Heme/metabolismo , Ferro/química , Ferro/metabolismo , Molibdênio/metabolismo , Oxirredução , Ligação Proteica , Sulfatos/química , Sulfatos/metabolismo , Temperatura
3.
FEMS Microbiol Lett ; 220(2): 261-9, 2003 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-12670690

RESUMO

Paracoccus pantotrophus grown anaerobically under denitrifying conditions expressed similar levels of the periplasmic nitrate reductase (NAP) when cultured in molybdate- or tungstate-containing media. A native PAGE gel stained for nitrate reductase activity revealed that only NapA from molybdate-grown cells displayed readily detectable nitrate reductase activity. Further kinetic analysis showed that the periplasmic fraction from cells grown on molybdate (3 microM) reduced nitrate at a rate of V(max)=3.41+/-0.16 micromol [NO(3)(-)] min(-1) mg(-1) with an affinity for nitrate of K(m)=0.24+/-0.05 mM and was heat-stable up to 50 degrees C. In contrast, the periplasmic fraction obtained from cells cultured in media supplemented with tungstate (100 microM) reduced nitrate at a much slower rate, with much lower affinity (V(max)=0.05+/-0.002 micromol [NO(3)(-)] min(-1) mg(-1) and K(m)=3.91+/-0.45 mM) and was labile during prolonged incubation at >20 degrees C. Nitrate-dependent growth of Escherichia coli strains expressing only nitrate reductase A was inhibited by sub-mM concentrations of tungstate in the medium. In contrast, a strain expressing only NAP was only partially inhibited by 10 mM tungstate. However, none of the above experimental approaches revealed evidence that tungsten could replace molybdenum at the active site of E. coli NapA. The combined data show that tungsten can function at the active site of some, but not all, molybdoenzymes from mesophilic bacteria.


Assuntos
Escherichia coli/enzimologia , Nitrato Redutases/metabolismo , Paracoccus/enzimologia , Tungstênio/farmacologia , Anaerobiose , Meios de Cultura , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Molibdênio/farmacologia , Nitrato Redutases/análise , Nitrato Redutases/biossíntese , Nitratos/metabolismo , Oxirredução , Paracoccus/efeitos dos fármacos , Paracoccus/crescimento & desenvolvimento , Compostos de Tungstênio/farmacologia
4.
Microbiology (Reading) ; 153(Pt 2): 411-419, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17259612

RESUMO

It is becoming recognized that leghaemoglobin constitutes an important buffer for the cytotoxic nitric oxide radical (NO(*)) in root nodules, although the sources of this NO(*) within nodules are unclear. In Bradyrhizobium japonicum bacteroids, NO(*) can be produced through the denitrification process, during which nitrate is reduced to nitrite by the periplasmic nitrate reductase Nap, and nitrite is reduced to NO(*) by the respiratory nitrite reductase NirK. To assess the contribution of bacteroidal denitrification to the NO(*) within nitrate-treated soybean nodules, electron paramagnetic resonance and UV-visible spectroscopy were employed to study the presence of nitrosylleghaemoglobin (LbNO) within nodules from plants inoculated with wild-type, napA or nirK B. japonicum strains. Since it has been found that hypoxia induces NO(*) production in plant root tissue, and that plant roots can be subjected to hypoxic stress during drought and flooding, the effect of hypoxic stress on the formation of LbNO complexes within nodules was also investigated. Maximal levels of LbNO were observed in nodules from plants treated with nitrate and subjected to hypoxic conditions. It is shown that, in the presence of nitrate, all of the LbNO within normoxic nodules arises from nitrate reduction by the bacteroidal periplasmic nitrate reductase, whereas Nap activity is only responsible for half of the LbNO within hypoxic nodules. In contrast to Nap, NirK is not essential for LbNO formation under any condition tested.


Assuntos
Bradyrhizobium/enzimologia , Glycine max/microbiologia , Leghemoglobina/metabolismo , Nitrato Redutases/metabolismo , Nitrito Redutases/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Proteínas de Bactérias/metabolismo , Bradyrhizobium/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Regulação Bacteriana da Expressão Gênica , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxirredução , Nódulos Radiculares de Plantas/metabolismo , Glycine max/metabolismo , Espectrofotometria , Simbiose
5.
J Biol Inorg Chem ; 12(7): 1083-94, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17701062

RESUMO

MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV-vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UV-vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Grupo dos Citocromos c/química , Citocromos/química , Heme/química , Shewanella/química , Grupo dos Citocromos c/isolamento & purificação , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Potenciometria , Respiração
6.
J Biol Chem ; 282(9): 6425-37, 2007 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-17130127

RESUMO

The Escherichia coli NapA (periplasmic nitrate reductase) contains a [4Fe-4S] cluster and a Mo-bis-molybdopterin guanine dinucleotide cofactor. The NapA holoenzyme associates with a di-heme c-type cytochrome redox partner (NapB). These proteins have been purified and studied by spectropotentiometry, and the structure of NapA has been determined. In contrast to the well characterized heterodimeric NapAB systems ofalpha-proteobacteria, such as Rhodobacter sphaeroides and Paracoccus pantotrophus, the gamma-proteobacterial E. coli NapA and NapB proteins purify independently and not as a tight heterodimeric complex. This relatively weak interaction is reflected in dissociation constants of 15 and 32 mum determined for oxidized and reduced NapAB complexes, respectively. The surface electrostatic potential of E. coli NapA in the apparent NapB binding region is markedly less polar and anionic than that of the alpha-proteobacterial NapA, which may underlie the weaker binding of NapB. The molybdenum ion coordination sphere of E. coli NapA includes two molybdopterin guanine dinucleotide dithiolenes, a protein-derived cysteinyl ligand and an oxygen atom. The Mo-O bond length is 2.6 A, which is indicative of a water ligand. The potential range over which the Mo(6+) state is reduced to the Mo(5+) state in either NapA (between +100 and -100 mV) or the NapAB complex (-150 to -350 mV) is much lower than that reported for R. sphaeroides NapA (midpoint potential Mo(6+/5+) > +350 mV), and the form of the Mo(5+) EPR signal is quite distinct. In E. coli NapA or NapAB, the Mo(5+) state could not be further reduced to Mo(4+). We then propose a catalytic cycle for E. coli NapA in which nitrate binds to the Mo(5+) ion and where a stable des-oxo Mo(6+) species may participate.


Assuntos
Proteínas de Escherichia coli/química , Molibdênio/química , Nitrato Redutase/química , Cristalografia por Raios X , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Ligação Proteica , Eletricidade Estática
7.
Dalton Trans ; (21): 3580-6, 2005 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-16234941

RESUMO

Protein film voltammetry of Paracoccus pantotrophus respiratory nitrate reductase (NarGH) and Synechococcus elongatus assimilatory nitrate reductase (NarB) shows that reductive activation of these enzymes may be required before steady state catalysis is observed. For NarGH complementary spectroscopic studies suggest a structural context for the activation. Catalytic protein film voltammetry at a range of temperatures has allowed quantitation of the activation energies for nitrate reduction. For NarGH with an operating potential of ca. 0.05 V the activation energy of ca. 35 kJ mol-1 is over twice that measured for NarB whose operating potential is ca. -0.35 V.


Assuntos
Nitrato Redutases/química , Nitrato Redutases/metabolismo , Sítios de Ligação , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Ativação Enzimática , Oxirredução , Paracoccus pantotrophus/enzimologia , Espectroscopia de Infravermelho com Transformada de Fourier , Synechococcus/enzimologia
8.
J Biol Chem ; 279(31): 32212-8, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15166246

RESUMO

Bacterial cytoplasmic assimilatory nitrate reductases are the least well characterized of all of the subgroups of nitrate reductases. In the present study the ferredoxin-dependent nitrate reductase NarB of the cyanobacterium Synechococcus sp. PCC 7942 was analyzed by spectropotentiometry and protein film voltammetry. Metal and acid-labile sulfide analysis revealed nearest integer values of 4:4:1 (iron/sulfur/molybdenum)/molecule of NarB. Analysis of dithionite-reduced enzyme by low temperature EPR revealed at 10 K the presence of a signal that is characteristic of a [4Fe-4S](1+) cluster. EPR-monitored potentiometric titration of NarB revealed that this cluster titrated as an n = 1 Nernstian component with a midpoint redox potential (E(m)) of -190 mV. EPR spectra collected at 60 K revealed a Mo(V) signal termed "very high g" with g(av) = 2.0047 in air-oxidized enzyme that accounted for only 10-20% of the total molybdenum. This signal disappeared upon reduction with dithionite, and a new "high g" species (g(av) = 1.9897) was observed. In potentiometric titrations the high g Mo(V) signal developed over the potential range of -100 to -350 mV (E(m) Mo(6+/5+) = -150 mV), and when fully developed, it accounted for 1 mol of Mo(V)/mol of enzyme. Protein film voltammetry of NarB revealed that activity is turned on at potentials below -200 mV, where the cofactors are predominantly [4Fe-4S](1+) and Mo(5+). The data suggests that during the catalytic cycle nitrate will bind to the Mo(5+) state of NarB in which the enzyme is minimally two-electron-reduced. Comparison of the spectral properties of NarB with those of the membrane-bound and periplasmic respiratory nitrate reductases reveals that it is closely related to the periplasmic enzyme, but the potential of the molybdenum center of NarB is tuned to operate at lower potentials, consistent with the coupling of NarB to low potential ferredoxins in the cell cytoplasm.


Assuntos
Proteínas de Escherichia coli/metabolismo , Nitrato Redutases/metabolismo , Potenciometria/métodos , Espectrofotometria/métodos , Sequência de Aminoácidos , Catálise , Cianobactérias/metabolismo , Citoplasma/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Escherichia coli/química , Ferredoxinas/química , Ferredoxinas/metabolismo , Cinética , Magnetismo , Metais/química , Dados de Sequência Molecular , Nitrato Redutase , Nitratos/química , Oxirredução , Plasmídeos/metabolismo , Homologia de Sequência de Aminoácidos , Temperatura , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA