Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(2): 1448-1459, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36603159

RESUMO

Chiral eight-membered carbocycles are important motifs in organic chemistry, natural product chemistry, chemical biology, and medicinal chemistry. The lack of synthetic methods toward their construction is a challenge preventing their rational design and stereoselective synthesis. The catalytic enantioselective [4 + 4] cycloaddition is one of the most straightforward and atom-economical methods to obtain chiral cyclooctadiene derivatives. We report the first organocatalytic asymmetric [4 + 4] cycloaddition of 9H-fluorene-1-carbaldehydes with electron-deficient dienes affording cyclooctadiene derivatives in good yields and with excellent control of peri-, diastereo-, and enantioselectivities. The reaction concept is based on the aminocatalytic formation of a polarized butadiene component incorporated into a cyclic extended π-system, with restricted conformational freedom, allowing for a stereocontrolled [4 + 4] cycloaddition. FMO analysis unveiled that the HOMO and LUMO of the two reacting partners resemble those of butadiene. The methodology allows for the construction of cyclooctadiene derivatives decorated with various functionalities. The cyclooctadienes were synthetically elaborated, allowing for structural diversity demonstrating their synthetic utility for the formation of, for example, chiral cyclobutene- or cyclooctane scaffolds. DFT computational studies shed light on the reaction mechanism identifying the preference for an initial but reversible [4 + 2] cycloaddition delivering an off-cycle catalyst resting state, from which catalyst elimination is not possible. The off-cycle catalyst-bound intermediate undergoes a retro-[4 + 2] cycloaddition, followed by a [4 + 4] cycloaddition generating a cycloadduct from which catalyst elimination is possible. The reaction pathway accounts for the observed peri-, diastereo-, and enantioselectivity of the organocatalytic [4 + 4] cycloaddition.


Assuntos
Butadienos , Reação de Cicloadição , Estereoisomerismo , Catálise
2.
Chemistry ; 29(12): e202204008, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36592117

RESUMO

Cycloadditions are an important class of reactions in materials science for the construction of polycyclic aromatic and polycyclic heteroaromatic compounds. Recently, cycloadditions have been expanded beyond the "classical" group of cycloadditions involving six π-electrons, and it is now possible to control cycloadditions for an extended number of π-electrons by applying organocatalysis. This novel field of cycloadditions-termed higher-order cycloadditions-allows new synthetic methodologies to construct polycyclic carbo- and heteroaromatic compounds in two or three dimensions. This concept presents higher-order cycloadditions as a method for accessing two- and three-dimensional azulenes and cyclazines, as well as three dimensional indenes, as polycyclic aromatic and polycyclic heteroaromatic compounds.

3.
J Am Chem Soc ; 144(2): 1056-1065, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34990550

RESUMO

Nonbiaryl atropisomers are molecules defined by a stereogenic axis featuring at least one nonarene moiety. Among these, scaffolds bearing a conformationally stable C(sp2)-C(sp3) stereogenic axis have been observed in natural compounds; however, their enantioselective synthesis remains almost completely unexplored. Herein we disclose a new class of chiral C(sp2)-C(sp3) atropisomers obtained with high levels of stereoselectivity (up to 99% ee) by means of an organocatalytic asymmetric methodology. Multiple molecular motifs could be embedded in this class of C(sp2)-C(sp3) atropisomers, showing a broad and general protocol. Experimental data provide strong evidence of the conformational stability of the C(sp2)-C(sp3) stereogenic axis (up to t1/225 °C >1000 y) in the obtained compounds and show kinetic control over this rare stereogenic element. This, coupled with density functional theory calculations, suggests that the observed stereoselectivity arises from a Curtin-Hammett scenario establishing an equilibrium of intermediates. Furthermore, the experimental investigation led to evidence of the operating principle of central-to-axial chirality conversions.

4.
J Am Chem Soc ; 143(16): 6140-6151, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33872512

RESUMO

The first enantioselective [12 + 2] cycloaddition has been developed for the construction of a chiral cycl[3.2.2]azine core, a tricyclic moiety with a central ring-junction nitrogen atom, by an operationally simple one-step organocatalytic process. The reaction concept builds upon aminocatalytically generated 12π-components derived from 5H-benzo[a]pyrrolizine-3-carbaldehydes reacting with different electron-deficient 2π-components and affording the complex scaffold of benzo[a]cycl[3.2.2]azine (indolizino[3,4,5-ab]isoindole) with excellent enantio- and diastereoselectivity in good yields. The developed reaction is robust toward diverse substituent patterns and has been extended to different classes of electron-deficient 2π-components by minor variations in reaction setup. The obtained [12 + 2] cycloadducts are electron-deficient in nature, and their reaction with nucleophiles have been demonstrated. The enantioselective [12 + 2] cycloaddition with α,ß-unsaturated aldehydes as the electron-deficient 2π-components relies upon an unconventional, simple aminocatalyst. In order to understand the high stereoselectivity of the [12 + 2] cycloaddition for this simple catalyst, combined experimental and computational investigations were performed. The investigations point to activation of both the 5H-benzo[a]pyrrolizine-3-carbaldehyde and the α,ß-unsaturated aldehyde by the aminocatalyst and that the reaction proceeds by a stepwise cycloaddition, where especially the ring-closure is crucial for the stereochemical outcome. For other electron-deficient 2π-components, such as α,ß-unsaturated ketoesters and nitroolefins, a more sterically demanding aminocatalyst has been applied and the corresponding [12 + 2] cycloadducts are obtained with excellent stereoselectivity. The [12 + 2] cycloaddition with vinyl sulfones afforded fully unsaturated systems, which display photoluminescence properties and for which quantum yields have been evaluated.

5.
Angew Chem Int Ed Engl ; 60(34): 18527-18531, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34101936

RESUMO

An efficient and exceptionally stereoselective synthesis of chiral cycl[3.2.2]azines has been realized by means of the rational design and utilization of novel (E)-3-benzylidene-3H-pyrrolizines in iminium-ion-catalyzed [8+2] cycloaddition reactions. The presented protocol allows for the incorporation of diverse enals, including cinnamaldehydes, enolizable aldehydes, and substrates of extended conjugation. The obtained products contain both an electron-rich alkenyl pyrrole moiety and an electron-deficient carbaldehyde substituent, and both moieties can undergo selective transformations with retention of the stereochemical information established in the [8+2] cycloaddition.

6.
Acc Chem Res ; 52(12): 3488-3501, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31789016

RESUMO

The concept of pericyclic reactions and the explanation of their specificity through orbital symmetries introduced a new way of understanding reactions and looking for new ones. One of the 1965 Woodward-Hoffmann communications described "the (as yet unobserved) symmetry-allowed 6 + 4 combination", the prediction of a new field of "higher-order" cycloadditions, involving more than six electrons. Later these authors predicted exo-stereoselectivity for the [6 + 4]-cycloaddition. Chemists rushed to test this prediction (for the most part successfully). For more than half a century, chemists have hunted for additional higher-order cycloadditions. The application of catalysis within organic chemistry allows the accomplishment of previously unattainable reactions, including higher-order cycloadditions. The many examples of [8 + 2], [6 + 4], and cycloadditions of even higher electron-counts discovered since the Woodward-Hoffmann rules were introduced illustrate the difficulty in predicting which of these transformations will occur when two highly unsaturated molecules react. Periselectivity has been a challenge, and the development of enantioselective variants has been elusive. While progress was made, the rise of organocatalysis in asymmetric synthesis has led to a surge of interest in stereoselective versions of higher-order cycloadditions. Through organocatalytic activation of conjugated cyclic polyenes and heteroaromatic compounds, asymmetric [8 + 2]-, [6 + 4]-, and [10 + 4]-cycloadditions have been realized by our groups. In this century, [6 + 4]-cycloadditions have been found also to occur in enzyme-catalyzed reactions for the biosynthesis of spinosyn A, heronamide, and streptoseomycin natural products. A whole new class of enzymes, the pericyclases that catalyze pericyclic reactions, has been discovered. A remarkable aspect of these recent developments is the cross-disciplinary research involved: from organic synthesis to computational studies integrated with experimental studies of reaction mechanisms, intermediates, and dynamics, to understanding mechanisms of enzyme catalysis and engineering of enzymes. This Account describes how our groups have been involved in the expansion of the higher-order cycloaddition frontiers. We describe both the history and recent progress in higher-order cycloadditions, and how these advances have been made by our collaborative experimental and computational studies. Progress in asymmetric organocatalysis, incorporating enantioselective higher-order cycloadditions in organic synthesis, and the stereoselective synthesis of important scaffolds will be highlighted. Experimental progress and computational modeling with density functional theory (DFT) has identified ambimodal cycloaddition pathways and led to the realization that multiple products of pericyclic reactions are linked by common transition states. Molecular dynamic simulations have provided fundamental understanding of factors controlling periselectivity and have led to discoveries of a group of enzymes, the pericyclases, which catalyze pericyclic reactions such as [6 + 4]-cycloadditions.


Assuntos
Reação de Cicloadição/métodos , Estereoisomerismo
7.
Angew Chem Int Ed Engl ; 57(40): 13182-13186, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30106240

RESUMO

The first peri- and stereoselective [10+4] cycloaddition between catalytically generated amino isobenzofulvenes and electron-deficient dienes is described. The highly stereoselective catalytic [10+4] cycloaddition exhibits a broad scope with high yields, reflecting a robust higher-order cycloaddition. Experimental and computational investigations support a kinetic distribution of intermediate rotamers dictating the enantioselectivity, which relies heavily on additive effects.

8.
Chem Commun (Camb) ; 55(2): 202-205, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30520898

RESUMO

A direct and mild strategy for the synthesis of benzo[a]azulenes based on an organocatalytic [10+4] cycloaddition reaction is described. The strategy enables a diversity-oriented approach for the synthesis of various poly-functionalised azulenes from easily accessible starting materials.

9.
Chem Commun (Camb) ; 52(84): 12474-12477, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27711500

RESUMO

The enantio- and diastereoselective formation of indenes spirofused to highly substituted cyclopropanes is described. The application of a new cinchona alkaloid derived ammonium salt in a phase transfer catalysis setup facilitates high selectivity and excellent yields at low catalyst loadings (0.1-1.0 mol%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA