RESUMO
Amyloid ß (Aß) protein is responsible for Alzheimer's disease, and one of its important fragments, Aß(25-35), is found in the brain and has been shown to be neurotoxic. Tachykinin neuropeptides, including Neuromedin K (NK), Kassinin, and Substance P, have been reported to reduce Aß(25-35)'s toxicity in cells even though they share similar primary structures with Aß(25-35). Here, we seek to understand the molecular mechanisms of how these peptides interact with Aß(25-35) and to shed light on why some peptides with similar primary structures are toxic and others nontoxic. We use both experimental and computational methods, including ion mobility mass spectrometry and enhanced-sampling replica-exchange molecular dynamics simulations, to study the aggregation pathways of Aß(25-35), NK, Kassinin, Substance P, and mixtures of the latter three with Aß(25-35). NK and Substance P were observed to remove the higher-order oligomers (i.e., hexamers and dodecamers) of Aß(25-35), which are related to its toxicity, although Substance P did so more slowly. In contrast, Kassinin was found to promote the formation of these higher-order oligomers. This result conflicts with what is expected and is elaborated on in the text. We also observe that even though they have significant structural homology with Aß(25-35), NK, Kassinin, and Substance P do not form hexamers with a ß-sheet structure like Aß(25-35). The hexamer structure of Aß(25-35) has been identified as a cylindrin, and this structure has been strongly correlated to toxic species. The reasons why the three tachykinin peptides behave so differently when mixed with Aß(25-35) are discussed.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Taquicininas , Doença de Alzheimer/metabolismo , Amiloide/química , Peptídeos beta-Amiloides/química , Humanos , Cassinina/química , Fragmentos de Peptídeos/química , Substância P/química , Taquicininas/químicaRESUMO
Background: Characterizing the antibody epitope profiles of messenger RNA (mRNA)-based vaccines against SARS-CoV-2 can aid in elucidating the mechanisms underlying the antibody-mediated immune responses elicited by these vaccines. Methods: This study investigated the distinct antibody epitopes toward the SARS-CoV-2 spike (S) protein targeted after a two-dose primary series of mRNA-1273 followed by a booster dose of mRNA-1273 or a variant-updated vaccine among serum samples from clinical trial adult participants. Results: Multiple S-specific epitopes were targeted after primary vaccination; while signal decreased over time, a booster dose after >6 months largely revived waning antibody signals. Epitope identity also changed after booster vaccination in some subjects, with four new S-specific epitopes detected with stronger signals after boosting than with primary vaccination. Notably, the strength of antibody responses after booster vaccination differed by the exact vaccine formulation, with variant-updated mRNA-1273.211 and mRNA-1273.617.2 booster formulations inducing significantly stronger S-specific signals than a mRNA-1273 booster. Conclusion: Overall, these results identify key S-specific epitopes targeted by antibodies induced by mRNA-1273 primary and variant-updated booster vaccination.
Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Vacinas contra COVID-19 , Adulto , Humanos , Anticorpos , Vacinação , Epitopos , RNA Mensageiro/genética , SARS-CoV-2 , Vacinas de mRNARESUMO
As Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to spread, characterization of its antibody epitopes, emerging strains, related coronaviruses, and even the human proteome in naturally infected patients can guide the development of effective vaccines and therapies. Since traditional epitope identification tools are dependent upon pre-defined peptide sequences, they are not readily adaptable to diverse viral proteomes. The Serum Epitope Repertoire Analysis (SERA) platform leverages a high diversity random bacterial display library to identify proteome-independent epitope binding specificities which are then analyzed in the context of organisms of interest. When evaluating immune response in the context of SARS-CoV-2, we identify dominant epitope regions and motifs which demonstrate potential to classify mild from severe disease and relate to neutralization activity. We highlight SARS-CoV-2 epitopes that are cross-reactive with other coronaviruses and demonstrate decreased epitope signal for mutant SARS-CoV-2 strains. Collectively, the evolution of SARS-CoV-2 mutants towards reduced antibody response highlight the importance of data-driven development of the vaccines and therapies to treat COVID-19.