RESUMO
Quantum light sources play a fundamental role in quantum technologies ranging from quantum networking to quantum sensing and computation. The development of these technologies requires scalable platforms, and the recent discovery of quantum light sources in silicon represents an exciting and promising prospect for scalability. The usual process for creating color centers in silicon involves carbon implantation into silicon, followed by rapid thermal annealing. However, the dependence of critical optical properties, such as the inhomogeneous broadening, the density, and the signal-to-background ratio, on centers implantation steps is poorly understood. We investigate the role of rapid thermal annealing on the dynamic of the formation of single color centers in silicon. We find that the density and the inhomogeneous broadening greatly depend on the annealing time. We attribute the observations to nanoscale thermal processes occurring around single centers and leading to local strain fluctuations. Our experimental observation is supported by theoretical modeling based on first principles calculations. The results indicate that annealing is currently the main step limiting the scalable manufacturing of color centers in silicon.
RESUMO
Electrically controllable nonvolatile magnetic memories show great potential for the replacement of conventional semiconductor-based memory technologies. Here, we experimentally demonstrate ultrafast spin-orbit torque (SOT)-induced coherent magnetization switching dynamics in a ferromagnet. We use an ultrafast photoconducting switch and a coplanar strip line to generate and guide a ~9-picosecond electrical pulse into a heavy metal/ferromagnet multilayer to induce ultrafast SOT. We then use magneto-optical probing to investigate the magnetization dynamics with sub-picosecond resolution. Ultrafast heating by the approximately 9 picosecond current pulse induces a thermal anisotropy torque which, in combination with the damping-like torque, coherently rotates the magnetization to obtain zero-crossing of magnetization in ~70 picoseconds. A macro-magnetic simulation coupled with an ultrafast heating model agrees well with the experiment and suggests coherent magnetization switching without any incubation delay on an unprecedented time scale. Our work proposes a unique magnetization switching mechanism toward markedly increasing the writing speed of SOT magnetic random-access memory devices.