Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Mol Cell ; 83(15): 2768-2780.e6, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37402371

RESUMO

Type V CRISPR-associated systems (Cas)12 family nucleases are considered to have evolved from transposon-associated TnpB, and several of these nucleases have been engineered as versatile genome editors. Despite the conserved RNA-guided DNA-cleaving functionality, these Cas12 nucleases differ markedly from the currently identified ancestor TnpB in aspects such as guide RNA origination, effector complex composition, and protospacer adjacent motif (PAM) specificity, suggesting the presence of earlier evolutionary intermediates that could be mined to develop advanced genome manipulation biotechnologies. Using evolutionary and biochemical analyses, we identify that the miniature type V-U4 nuclease (referred to as Cas12n, 400-700 amino acids) is likely the earliest evolutionary intermediate between TnpB and large type V CRISPR systems. We demonstrate that with the exception of CRISPR array emergence, CRISPR-Cas12n shares several similar characteristics with TnpB-ωRNA, including a miniature and likely monomeric nuclease for DNA targeting, origination of guide RNA from nuclease coding sequence, and generation of a small sticky end following DNA cleavage. Cas12n nucleases recognize a unique 5'-AAN PAM sequence, of which the A nucleotide at the -2 position is also required for TnpB. Moreover, we demonstrate the robust genome-editing capacity of Cas12n in bacteria and engineer a highly efficient CRISPR-Cas12n (termed Cas12Pro) with up to 80% indel efficiency in human cells. The engineered Cas12Pro enables base editing in human cells. Our results further expand the understanding regarding type V CRISPR evolutionary mechanisms and enrich the miniature CRISPR toolbox for therapeutic applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Endonucleases/genética , DNA/genética , RNA
2.
Cell ; 161(4): 879-892, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25936837

RESUMO

N(6)-methyldeoxyadenosine (6mA or m(6)A) is a DNA modification preserved in prokaryotes to eukaryotes. It is widespread in bacteria and functions in DNA mismatch repair, chromosome segregation, and virulence regulation. In contrast, the distribution and function of 6mA in eukaryotes have been unclear. Here, we present a comprehensive analysis of the 6mA landscape in the genome of Chlamydomonas using new sequencing approaches. We identified the 6mA modification in 84% of genes in Chlamydomonas. We found that 6mA mainly locates at ApT dinucleotides around transcription start sites (TSS) with a bimodal distribution and appears to mark active genes. A periodic pattern of 6mA deposition was also observed at base resolution, which is associated with nucleosome distribution near the TSS, suggesting a possible role in nucleosome positioning. The new genome-wide mapping of 6mA and its unique distribution in the Chlamydomonas genome suggest potential regulatory roles of 6mA in gene expression in eukaryotic organisms.


Assuntos
Adenina/análogos & derivados , Chlamydomonas reinhardtii/genética , Sítio de Iniciação de Transcrição , 5-Metilcitosina/metabolismo , Adenina/metabolismo , Chlamydomonas reinhardtii/metabolismo , DNA de Algas/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Nucleossomos/metabolismo , Transcrição Gênica
3.
Nat Chem Biol ; 20(2): 180-189, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37697004

RESUMO

CRISPR-Cas12f nucleases are currently one of the smallest genome editors, exhibiting advantages for efficient delivery via cargo-size-limited adeno-associated virus delivery vehicles. Most characterized Cas12f nucleases recognize similar T-rich protospacer adjacent motifs (PAMs) for DNA targeting, substantially restricting their targeting scope. Here we report the cryogenic electron microscopy structure and engineering of a miniature Clostridium novyi Cas12f1 nuclease (CnCas12f1, 497 amino acids) with rare C-rich PAM specificity. Structural characterizations revealed detailed PAM recognition, asymmetric homodimer formation and single guide RNA (sgRNA) association mechanisms. sgRNA engineering transformed CRISPR-CnCas12f1, which initially was incapable of genome targeting in bacteria, into an effective genome editor in human cells. Our results facilitate further understanding of CRISPR-Cas12f1 working mechanism and expand the mini-CRISPR toolbox.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Humanos , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA/química , Genoma , Endonucleases/genética , Endonucleases/metabolismo , Edição de Genes
4.
Nucleic Acids Res ; 52(2): 967-976, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38096062

RESUMO

Pseudomonas aeruginosa harbors sophisticated transcription factor (TF) networks to coordinately regulate cellular metabolic states for rapidly adapting to changing environments. The extraordinary capacity in fine-tuning the metabolic states enables its success in tolerance to antibiotics and evading host immune defenses. However, the linkage among transcriptional regulation, metabolic states and antibiotic tolerance in P. aeruginosa remains largely unclear. By screening the P. aeruginosa TF mutant library constructed by CRISPR/Cas12k-guided transposase, we identify that rccR (PA5438) is a major genetic determinant in aminoglycoside antibiotic tolerance, the deletion of which substantially enhances bacterial tolerance. We further reveal the inhibitory roles of RccR in pyruvate metabolism (aceE/F) and glyoxylate shunt pathway (aceA and glcB), and overexpression of aceA or glcB enhances bacterial tolerance. Moreover, we identify that 2-keto-3-deoxy-6-phosphogluconate (KDPG) is a signal molecule that directly binds to RccR. Structural analysis of the RccR/KDPG complex reveals the detailed interactions. Substitution of the key residue R152, K270 or R277 with alanine abolishes KDPG sensing by RccR and impairs bacterial growth with glycerol or glucose as the sole carbon source. Collectively, our study unveils the connection between aminoglycoside antibiotic tolerance and RccR-mediated central carbon metabolism regulation in P. aeruginosa, and elucidates the KDPG-sensing mechanism by RccR.


Assuntos
Proteínas de Bactérias , Carbono , Pseudomonas aeruginosa , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Carbono/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Redes Reguladoras de Genes
5.
PLoS Pathog ; 18(8): e1010693, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35914009

RESUMO

Polysaccharide capsule is the main virulence factor of K. pneumoniae, a major pathogen of bloodstream infections in humans. While more than 80 capsular serotypes have been identified in K. pneumoniae, only several serotypes are frequently identified in invasive infections. It is documented that the capsule enhances bacterial resistance to phagocytosis, antimicrobial peptides and complement deposition under in vitro conditions. However, the precise role of the capsule in the process of K. pneumoniae bloodstream infections remains to be elucidated. Here we show that the capsule promotes K. pneumoniae survival in the bloodstream by protecting bacteria from being captured by liver resident macrophage Kupffer cells (KCs). Our real-time in vivo imaging revealed that blood-borne acapsular K. pneumoniae mutant is rapidly captured and killed by KCs in the liver sinusoids of mice, whereas, to various extents, encapsulated strains bypass the anti-bacterial machinery in a serotype-dependent manner. Using capsule switched strains, we show that certain high-virulence (HV) capsular serotypes completely block KC's capture, whereas the low-virulence (LV) counterparts confer partial protection against KC's capture. Moreover, KC's capture of the LV K. pneumoniae could be in vivo neutralized by free capsular polysaccharides of homologous but not heterologous serotypes, indicating that KCs specifically recognize the LV capsules. Finally, immunization with inactivated K. pneumoniae enables KCs to capture the HV K. pneumoniae. Together, our findings have uncovered that KCs are the major target cells of K. pneumoniae capsule to promote bacterial survival and virulence, which can be reversed by vaccination.


Assuntos
Infecções por Klebsiella , Sepse , Animais , Cápsulas Bacterianas , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae , Células de Kupffer , Fígado , Camundongos , Polissacarídeos
6.
Nucleic Acids Res ; 50(10): 5948-5960, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35640608

RESUMO

The cell-wall recycling process is important for bacterial survival in nutrient-limited conditions and, in certain cases, is directly involved in antibiotic resistance. In the sophisticated cell-wall recycling process in Escherichia coli, the transcriptional repressor MurR controls the expression of murP and murQ, which are involved in transporting and metabolizing N-acetylmuramic acid (MurNAc), generating N-acetylmuramic acid-6-phosphate (MurNAc-6-P) and N-acetylglucosamine-6-phosphate (GlcNAc-6-P). Here, we report that both MurNAc-6-P and GlcNAc-6-P can bind to MurR and weaken the DNA binding ability of MurR. Structural characterizations of MurR in complex with MurNAc-6-P or GlcNAc-6-P as well as in the apo form revealed the detailed ligand recognition chemistries. Further studies showed that only MurNAc-6-P, but not GlcNAc-6-P, is capable of derepressing the expression of murQP controlled by MurR in cells and clarified the substrate specificity through the identification of key residues responsible for ligand binding in the complex structures. In summary, this study deciphered the molecular mechanism of the cell wall recycling process regulated by MurR in E. coli.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli , Proteínas Repressoras/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Glicosídeo Hidrolases/genética , Ligantes , Fosfatos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Nat Chem Biol ; 17(11): 1132-1138, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34475565

RESUMO

The RNA-guided CRISPR-associated (Cas) nucleases are versatile tools for genome editing in various organisms. The large sizes of the commonly used Cas9 and Cas12a nucleases restrict their flexibility in therapeutic applications that use the cargo-size-limited adeno-associated virus delivery vehicle. More compact systems would thus offer more therapeutic options and functionality for this field. Here, we report a miniature class 2 type V-F CRISPR-Cas genome-editing system from Acidibacillus sulfuroxidans (AsCas12f1, 422 amino acids). AsCas12f1 is an RNA-guided endonuclease that recognizes 5' T-rich protospacer adjacent motifs and creates staggered double-stranded breaks to target DNA. We show that AsCas12f1 functions as an effective genome-editing tool in both bacteria and human cells using various delivery methods, including plasmid, ribonucleoprotein and adeno-associated virus. The small size of AsCas12f1 offers advantages for cellular delivery, and characterizations of AsCas12f1 may facilitate engineering more compact genome-manipulation technologies.


Assuntos
Bacillales/química , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Edição de Genes
8.
Mol Cell ; 59(3): 345-358, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26145173

RESUMO

Many human cancers share similar metabolic alterations, including the Warburg effect. However, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Here we demonstrate a "synthetic lethal" interaction between oncogenic BRAF V600E and a ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL). HMGCL expression is upregulated in BRAF V600E-expressing human primary melanoma and hairy cell leukemia cells. Suppression of HMGCL specifically attenuates proliferation and tumor growth potential of human melanoma cells expressing BRAF V600E. Mechanistically, active BRAF upregulates HMGCL through an octamer transcription factor Oct-1, leading to increased intracellular levels of HMGCL product, acetoacetate, which selectively enhances binding of BRAF V600E but not BRAF wild-type to MEK1 in V600E-positive cancer cells to promote activation of MEK-ERK signaling. These findings reveal a mutation-specific mechanism by which oncogenic BRAF V600E "rewires" metabolic and cell signaling networks and signals through the Oct-1-HMGCL-acetoacetate axis to selectively promote BRAF V600E-dependent tumor development.


Assuntos
Leucemia de Células Pilosas/metabolismo , MAP Quinase Quinase 1/metabolismo , Melanoma/metabolismo , Fator 1 de Transcrição de Octâmero/metabolismo , Oxo-Ácido-Liases/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais , Acetoacetatos/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Regulação para Cima
9.
Angew Chem Int Ed Engl ; 62(5): e202212209, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36440527

RESUMO

Large Stokes shift (LSS) red fluorescent proteins (RFPs) are highly desirable for bioimaging advances. The RFP mKeima, with coexisting cis- and trans-isomers, holds significance as an archetypal system for LSS emission due to excited-state proton transfer (ESPT), yet the mechanisms remain elusive. We implemented femtosecond stimulated Raman spectroscopy (FSRS) and various time-resolved electronic spectroscopies, aided by quantum calculations, to dissect the cis- and trans-mKeima photocycle from ESPT, isomerization, to ground-state proton transfer in solution. This work manifests the power of FSRS with global analysis to resolve Raman fingerprints of intermediate states. Importantly, the deprotonated trans-isomer governs LSS emission at 620 nm, while the deprotonated cis-isomer's 520 nm emission is weak due to an ultrafast cis-to-trans isomerization. Complementary spectroscopic techniques as a table-top toolset are thus essential to study photochemistry in physiological environments.


Assuntos
Prótons , Análise Espectral Raman , Proteínas Luminescentes/química , Análise Espectral Raman/métodos , Isomerismo , Proteínas de Fluorescência Verde/química , Proteína Vermelha Fluorescente
10.
PLoS Biol ; 17(10): e3000496, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31603896

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have been harnessed as powerful genome editing tools in diverse organisms. However, the off-target effects and the protospacer adjacent motif (PAM) compatibility restrict the therapeutic applications of these systems. Recently, a Streptococcus pyogenes Cas9 (SpCas9) variant, xCas9, was evolved to possess both broad PAM compatibility and high DNA fidelity. Through determination of multiple xCas9 structures, which are all in complex with single-guide RNA (sgRNA) and double-stranded DNA containing different PAM sequences (TGG, CGG, TGA, and TGC), we decipher the molecular mechanisms of the PAM expansion and fidelity enhancement of xCas9. xCas9 follows a unique two-mode PAM recognition mechanism. For non-NGG PAM recognition, xCas9 triggers a notable structural rearrangement in the DNA recognition domains and a rotation in the key PAM-interacting residue R1335; such mechanism has not been observed in the wild-type (WT) SpCas9. For NGG PAM recognition, xCas9 applies a strategy similar to WT SpCas9. Moreover, biochemical and cell-based genome editing experiments pinpointed the critical roles of the E1219V mutation for PAM expansion and the R324L, S409I, and M694I mutations for fidelity enhancement. The molecular-level characterizations of the xCas9 nuclease provide critical insights into the mechanisms of the PAM expansion and fidelity enhancement of xCas9 and could further facilitate the engineering of SpCas9 and other Cas9 orthologs.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/genética , RNA Guia de Cinetoplastídeos/genética , Substituição de Aminoácidos , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/metabolismo , Clonagem Molecular , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Edição de Genes , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Mutação , Motivos de Nucleotídeos , Ligação Proteica , Engenharia de Proteínas/métodos , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo
11.
Mol Cell ; 55(4): 552-65, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25042803

RESUMO

Although the oxidative pentose phosphate pathway is important for tumor growth, how 6-phosphogluconate dehydrogenase (6PGD) in this pathway is upregulated in human cancers is unknown. We found that 6PGD is commonly activated in EGF-stimulated cells and human cancer cells by lysine acetylation. Acetylation at K76 and K294 of 6PGD promotes NADP(+) binding to 6PGD and formation of active 6PGD dimers, respectively. Moreover, we identified DLAT and ACAT2 as upstream acetyltransferases of K76 and K294, respectively, and HDAC4 as the deacetylase of both sites. Expressing acetyl-deficient mutants of 6PGD in cancer cells significantly attenuated cell proliferation and tumor growth. This is due in part to reduced levels of 6PGD products ribulose-5-phosphate and NADPH, which led to reduced RNA and lipid biosynthesis as well as elevated ROS. Furthermore, 6PGD activity is upregulated with increased lysine acetylation in primary leukemia cells from human patients, providing mechanistic insights into 6PGD upregulation in cancer cells.


Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Histona Desacetilases/metabolismo , Leucemia/patologia , Neoplasias Pulmonares/patologia , Lisina/metabolismo , Fosfogluconato Desidrogenase/metabolismo , Acetilação , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , NADP/metabolismo , Neoplasias Experimentais , Ligação Proteica/fisiologia , Multimerização Proteica
12.
Proc Natl Acad Sci U S A ; 115(15): 3942-3947, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581261

RESUMO

Metal acquisition is vital to pathogens for successful infection within hosts. Staphylopine (StP), a broad-spectrum metallophore biosynthesized by the major human pathogen, Staphylococcus aureus, plays a central role in transition-metal acquisition and bacterial virulence. The StP-like biosynthesis loci are present in various pathogens, and the proteins responsible for StP/metal transportation have been determined. However, the molecular mechanisms of how StP/metal complexes are recognized and transported remain unknown. We report multiple structures of the extracytoplasmic solute-binding protein CntA from the StP/metal transportation system in apo form and in complex with StP and three different metals. We elucidated a sophisticated metal-bound StP recognition mechanism and determined that StP/metal binding triggers a notable interdomain conformational change in CntA. Furthermore, CRISPR/Cas9-mediated single-base substitution mutations and biochemical analysis highlight the importance of StP/metal recognition for StP/metal acquisition. These discoveries provide critical insights into the study of novel metal-acquisition mechanisms in microbes.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Cobalto/metabolismo , Imidazóis/metabolismo , Níquel/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Zinco/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cobalto/química , Humanos , Níquel/química , Ligação Proteica , Domínios Proteicos , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/química , Staphylococcus aureus/genética , Zinco/química
13.
Biochemistry ; 59(15): 1465-1469, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32250096

RESUMO

Staphylococcus aureus surface proteins play important roles in host tissue colonization, biofilm formation, and bacterial virulence and are thus essential for successful host infections. The surface protein SdrC from S. aureus induces bacterial biofilm formation via an intermolecular homophilic interaction of its N2 domains. However, the molecular mechanism of how the homophilic interaction is achieved is unknown. Here, we report two crystal structures of SdrC N2N3 domains, revealing two possible homophilic interaction mechanisms: Ca2+-mediated intermolecular metal chelation of N2 domains and intermolecular interaction of N2 and N3 domains. Given the unnecessary role of the N3 domain in the induction of biofilm formation, the N2 domain-mediated metal chelation mechanism is likely the mechanism that facilitates SdrC homophilic interaction. Mutation of key Ca2+-chelating residues differentially reduced the level of protein dimer formation, further supporting the key role of metal chelation in the N2 domain interaction. Together, these results reveal the possible mechanism of the homophilic interaction of SdrC N2 domains and pave the way for the rational development of new strategies against this mechanism.


Assuntos
Proteínas de Bactérias/química , Staphylococcus aureus/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Staphylococcus aureus/metabolismo
14.
Mol Microbiol ; 109(5): 642-662, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29995988

RESUMO

Biotin (vitamin B7), a sulfur-containing fatty acid derivative, is a nutritional virulence factor in certain mycobacterial species. Tight regulation of biotin biosynthesis is important because production of biotin is an energetically expensive process requiring 15-20 equivalents of ATP. The Escherichia coli bifunctional BirA is a prototypical biotin regulatory system. In contrast, mycobacterial BirA is an unusual biotin protein ligase without DNA-binding domain. Recently, we established a novel two-protein paradigm of BioQ-BirA. However, structural and molecular mechanism for BioQ is poorly understood. Here, we report crystal structure of the M. smegmatis BioQ at 1.9 Å resolution. Structure-guided functional mapping defined a seven residues-requiring motif for DNA-binding activity. Western blot and MALDI-TOF MS allowed us to unexpectedly discover that the K47 acetylation activates crosstalking of BioQ to its cognate DNA. More intriguingly, excess of biotin augments the acetylation status of BioQ in M. smegmatis. It seems likely that BioQ acetylation proceeds via a non-enzymatic mechanism. Mutation of this acetylation site K47 in BioQ significantly impairs its regulatory role in vivo. This explains in part (if not all) why BioQ has no detectable requirement of the presumable bio-5'-AMP effecter, which is a well-known ligand for the paradigm E. coli BirA regulator system. Unlike the scenario seen with E. coli carrying a single biotinylated protein, AccB, genome-wide search and Streptavidin blot revealed that no less than seven proteins require the rare post-translational modification, biotinylation in M. smegmatis, validating its physiological demand for biotin at relatively high level. Taken together, our finding defines a novel biotin regulatory machinery by BioQ, posing a possibility that development of new antibiotics targets biotin, the limited nutritional virulence factor in certain pathogenic mycobacterial species.


Assuntos
Proteínas de Bactérias/química , Biotina/biossíntese , Mycobacterium smegmatis/enzimologia , Fatores de Transcrição/química , Acetilação , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Biotina/análogos & derivados , Biotina/química , Biotina/genética , Biotina/metabolismo , Biotinilação , Cristalografia por Raios X , Modelos Moleculares , Mycobacterium smegmatis/genética , Plasmídeos , Conformação Proteica , Fatores de Transcrição/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-30988149

RESUMO

In this study, a CRISPR/Cas9-mediated genome editing method was used to study the functions of the mgrB, tetA, and ramR genes in mediating colistin and tigecycline resistance in carbapenem-resistant Klebsiella pneumoniae (CRKP). Inactivation of the tetA or ramR gene or the mgrB gene by CRISPR/Cas9 affected bacterial susceptibility to tigecycline or colistin, respectively. This study proved that the CRISPR/Cas9-based genome editing method could be effectively applied to K. pneumoniae and should be further utilized for genetic characterization.


Assuntos
Edição de Genes/métodos , Klebsiella pneumoniae/efeitos dos fármacos , Sistemas CRISPR-Cas/genética , Colistina/farmacologia , Klebsiella pneumoniae/genética , Tigeciclina/farmacologia
16.
Appl Environ Microbiol ; 84(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30217854

RESUMO

Klebsiella pneumoniae is a promising industrial microorganism as well as a major human pathogen. The recent emergence of carbapenem-resistant K. pneumoniae has posed a serious threat to public health worldwide, emphasizing a dire need for novel therapeutic means against drug-resistant K. pneumoniae Despite the critical importance of genetics in bioengineering, physiology studies, and therapeutic-means development, genome editing, in particular, the highly desirable scarless genetic manipulation in K. pneumoniae, is often time-consuming and laborious. Here, we report a two-plasmid system, pCasKP-pSGKP, used for precise and iterative genome editing in K. pneumoniae By harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 genome cleavage system and the lambda Red recombination system, pCasKP-pSGKP enabled highly efficient genome editing in K. pneumoniae using a short repair template. Moreover, we developed a cytidine base-editing system, pBECKP, for precise C→T conversion in both the chromosomal and plasmid-borne genes by engineering the fusion of the cytidine deaminase APOBEC1 and a Cas9 nickase. By using both the pCasKP-pSGKP and the pBECKP tools, the blaKPC-2 gene was confirmed to be the major factor that contributed to the carbapenem resistance of a hypermucoviscous carbapenem-resistant K. pneumoniae strain. The development of the two editing tools will significantly facilitate the genetic engineering of K. pneumoniaeIMPORTANCE Genetics is a key means to study bacterial physiology. However, the highly desirable scarless genetic manipulation is often time-consuming and laborious for the major human pathogen K. pneumoniae We developed a CRISPR-Cas9-mediated genome-editing method and a cytidine base-editing system, enabling rapid, highly efficient, and iterative genome editing in both industrial and clinically isolated K. pneumoniae strains. We applied both tools in dissecting the drug resistance mechanism of a hypermucoviscous carbapenem-resistant K. pneumoniae strain, elucidating that the blaKPC-2 gene was the major factor that contributed to the carbapenem resistance of the hypermucoviscous carbapenem-resistant K. pneumoniae strain. Utilization of the two tools will dramatically accelerate a wide variety of investigations in diverse K. pneumoniae strains and relevant Enterobacteriaceae species, such as gene characterization, drug discovery, and metabolic engineering.


Assuntos
Sistemas CRISPR-Cas , Citidina Desaminase/metabolismo , Edição de Genes/métodos , Engenharia Genética/métodos , Genoma Bacteriano , Klebsiella pneumoniae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
17.
J Am Chem Soc ; 139(10): 3790-3795, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28218837

RESUMO

Staphylococcus aureus, a major human pathogen, has been the cause of serious infectious diseases with a high mortality rate. Although genetics is a key means to study S. aureus physiology, such as drug resistance and pathogenesis, genetic manipulation in S. aureus is always time-consuming and labor-intensive. Here we report a CRISPR/Cas9 system (pCasSA) for rapid and efficient genome editing, including gene deletion, insertion, and single-base substitution mutation in S. aureus. The designed pCasSA system is amenable to the assembly of spacers and repair arms by Golden Gate assembly and Gibson assembly, respectively, enabling rapid construction of the plasmids for editing. We further engineered the pCasSA system to be an efficient transcription inhibition system for gene knockdown and possible genome-wide screening. The development of the CRISPR/Cas9-mediated genome editing and transcription inhibition tools will dramatically accelerate drug-target exploration and drug development.


Assuntos
Sistemas CRISPR-Cas/genética , Staphylococcus aureus/genética , Edição de Genes , Engenharia Genética , Mutação , Staphylococcus aureus/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
18.
Nucleic Acids Res ; 43(13): 6557-67, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26068471

RESUMO

N(6)-methyladenosine (m(6)A) is the most abundant internal modification in eukaryotic messenger RNA (mRNA). Recent discoveries of demethylases and specific binding proteins of m(6)A as well as m(6)A methylomes obtained in mammals, yeast and plants have revealed regulatory functions of this RNA modification. Although m(6)A is present in the ribosomal RNA of bacteria, its occurrence in mRNA still remains elusive. Here, we have employed ultra-high pressure liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UHPLC-QQQ-MS/MS) to calculate the m(6)A/A ratio in mRNA from a wide range of bacterial species, which demonstrates that m(6)A is an abundant mRNA modification in tested bacteria. Subsequent transcriptome-wide m(6)A profiling in Escherichia coli and Pseudomonas aeruginosa revealed a conserved m(6)A pattern that is distinct from those in eukaryotes. Most m(6)A peaks are located inside open reading frames and carry a unique consensus motif of GCCAU. Functional enrichment analysis of bacterial m(6)A peaks indicates that the majority of m(6)A-modified genes are associated with respiration, amino acids metabolism, stress response and small RNAs, suggesting potential functional roles of m(6)A in these pathways.


Assuntos
Adenosina/análogos & derivados , RNA Bacteriano/química , RNA Mensageiro/química , Adenosina/análise , Escherichia coli/genética , Pseudomonas aeruginosa/genética , Temperatura
20.
Proc Natl Acad Sci U S A ; 110(13): 5010-5, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479646

RESUMO

Quinone molecules are intracellular electron-transport carriers, as well as critical intra- and extracellular signals. However, transcriptional regulation of quinone signaling and its molecular basis are poorly understood. Here, we identify a thiol-stress-sensing regulator YodB family transcriptional regulator as a central component of quinone stress response of Staphylococcus aureus, which we have termed the quinone-sensing and response repressor (QsrR). We also identify and confirm an unprecedented quinone-sensing mechanism based on the S-quinonization of the essential residue Cys-5. Structural characterizations of the QsrR-DNA and QsrR-menadione complexes further reveal that the covalent association of menadione directly leads to the release of QsrR from operator DNA following a 10° rigid-body rotation as well as a 9-Å elongation between the dimeric subunits. The molecular level characterization of this quinone-sensing transcriptional regulator provides critical insights into quinone-mediated gene regulation in human pathogens.


Assuntos
Proteínas de Bactérias , Benzoquinonas , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Repressoras , Transdução de Sinais/fisiologia , Staphylococcus aureus , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzoquinonas/química , Benzoquinonas/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Humanos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA