Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Insect Biochem Physiol ; 116(3): e22129, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973114

RESUMO

In beekeeping, when natural nectar or pollen sources become limited, it is crucial to provide supplemental bee feed to maintain the viability of the bee colony. This study was conducted during the autumn food shortage season, during which bees were fed with different proportions of modified bee feed. We identified an optimal bee diet by evaluating honeybee longevity, food consumption, body weight, and gut microbe distribution, with natural pollen serving as a control diet. The results indicated that bees preferred a mixture of 65% defatted soy flour, 20% corn protein powder, 13% wheat germ flour, 2% yeast powder, and a 50% sucrose solution. This bee food recipe significantly increased the longevity, feed consumption, and body weight of bees. The group fed the natural pollen diet exhibited a greater abundance of essential intestinal bacteria. The bee diets used in this study contained higher protein levels and lower concentrations of unsaturated fatty acids and vitamins than did the diets stored within the colonies. Therefore, we propose that incorporating both bee feed and natural pollen in beekeeping practices will achieve more balanced nutritional intake.


Assuntos
Ração Animal , Pólen , Abelhas/fisiologia , Animais , Ração Animal/análise , Dieta , Longevidade , Criação de Abelhas , Microbioma Gastrointestinal , Peso Corporal
2.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38928075

RESUMO

In most cases, the number of honeybee stings received by the body is generally small, but honeybee stings can still cause serious allergic reactions. This study fully simulated bee stings under natural conditions and used 1H Nuclear Magnetic Resonance (1H NMR) to analyze the changes in the serum metabolome of Sprague-Dawley (SD) rats stung once or twice by honeybees to verify the impact of this mild sting on the body and its underlying mechanism. The differentially abundant metabolites between the blank control rats and the rats stung by honeybees included four amino acids (aspartate, glutamate, glutamine, and valine) and four organic acids (ascorbic acid, lactate, malate, and pyruvate). There was no separation between the sting groups, indicating that the impact of stinging once or twice on the serum metabolome was similar. Using the Principal Component Discriminant Analysis ( PCA-DA) and Variable Importance in Projection (VIP) methods, glucose, lactate, and pyruvate were identified to help distinguish between sting groups and non-sting groups. Metabolic pathway analysis revealed that four metabolic pathways, namely, the tricarboxylic acid cycle, pyruvate metabolism, glutamate metabolism, and alanine, aspartate, and glutamate metabolism, were significantly affected by bee stings. The above results can provide a theoretical basis for future epidemiological studies of bee stings and medical treatment of patients stung by honeybees.


Assuntos
Mordeduras e Picadas de Insetos , Metaboloma , Ratos Sprague-Dawley , Animais , Abelhas/metabolismo , Ratos , Mordeduras e Picadas de Insetos/sangue , Masculino , Redes e Vias Metabólicas , Análise de Componente Principal
3.
Life (Basel) ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38541665

RESUMO

The glands of bees are responsible for generating and secreting various biologically active substances that significantly impact bee physiological health and adaptability. This study aimed to investigate the effects of adding citric acid (CA) to bee feed on gland development and royal jelly quality. By formulating feed with varying proportions of CA, evaluation was undertaken of pollen feeding by honeybees under laboratory conditions, along with the impact of CA on the development of major glands, to determine suitable addition proportions. Further optimization of the CA proportion involved feeding colonies and evaluating royal jelly production and quality. The results indicated that feed containing 0.75% CA significantly extended the lifespan of bees and increased their pollen consumption. Gland development in bees showed a positive correlation with CA addition within the range of 0.25% to 0.75%, especially at 0.50% and 0.75%, which notably accelerated the development of mandibular, hypopharyngeal, and cephalic salivary glands, with active proliferation and differentiation of glandular cells and maintenance of normal gland size and morphology. CA added to feed stimulated vigorous secretion of wax glands in worker bees, resulting in prolific wax construction. Colonies consuming feed containing 0.50% CA produced royal jelly with significantly reduced moisture and total sugar content and increased levels of 10-HDA, total phenolic acids, total proteins, and acidity. These findings demonstrate that CA consumption significantly prolongs bee lifespan, increases consumption, promotes gland development, and enhances royal jelly quality. This research provides theoretical guidance for beekeeping practices and feed development, contributing to the sustainable advancement of apiculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA