Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(35): e2401264, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38634249

RESUMO

Biological photo-responsive ion channels play important roles in the important metabolic processes of living beings. To mimic the unique functions of biological prototypes, the transition metal dichalcogenides, owing to their excellent mechanical, electrical, and optical properties, are already used for artificial intelligent channel constructions. However, there remain challenges to building artificial bio-semiconductor nanochannels with finely tuned band gaps for accurately simulating or regulating ion transport. Here, two well-designed peptides are employed for the WS2 nanosheets functionalization with the sequences of PFPFPFPFC and DFDFDFDFC (PFC and DFC; P: proline, D: aspartate, and F: phenylalanine) through cysteine (Cys, C) linker, and an asymmetric peptide-WS2 membrane (AP-WS2M) could be obtained via self-assembly of peptide-WS2 nanosheets. The AP-WS2M could realize the photo-driven anti-gradient ion transport and vis-light enhanced osmotic energy conversion by well-designed working patterns. The photo-driven ion transport mechanism stems from a built-in photovoltaic motive force with the help of formed type II band alignment between the PFC-WS2 and DFC-WS2. As a result, the ions would be driven across the channels of the membrane for different applications. The proposed system provides an effective solution for building photo-driven biomimetic 2D bio-semiconductor ion channels, which could be extensively applied in the fields of drug delivery, desalination, and energy conversion.


Assuntos
Canais Iônicos , Transporte de Íons , Peptídeos , Peptídeos/química , Canais Iônicos/metabolismo , Canais Iônicos/química , Luz
2.
Angew Chem Int Ed Engl ; 63(7): e202317361, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38116868

RESUMO

Numerous reported bioinspired osmotic energy conversion systems employing cation-/anion-selective membranes and solutions with different salinity are actually far from the biological counterpart. The iso-osmotic power generator with the specific ionic permselective channels (e.g., K+ or Na+ channels) which just allow specific ions to get across and iso-osmotic solutions still remain challenges. Inspired by nature, we report a bioinspired K+ -channel by employing a K+ selective ligand, 1,1,1-tris{[(2'-benzylaminoformyl)phenoxy]methyl}ethane (BMP) and graphene oxide membrane. Specifically, the K+ and Na+ selectivity of the prepared system could reach up to ≈17.8, and the molecular dynamics simulation revealed that the excellent permselectivity of K+ mainly stemmed from the formed suitable channel size. Thus, we assembled the K+ -selective iso-osmotic power generator (KSIPG) with the power density up to ≈15.1 mW/m2 between equal concentration solutions, which is higher than traditional charge-selective osmotic power generator (CSOPG). The proposed strategy has well shown the realizable approach to construct single-ion selective channels-based highly efficient iso-osmotic energy conversion systems and would surely inspire new applications in other fields, including self-powered systems and medical materials, etc.

3.
Small ; : e2308277, 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38044301

RESUMO

Bioinspired two-dimensional (2D) nanofluidic systems for photo-induced ion transport have attracted great attention, as they open a new pathway to enabling light-to-ionic energy conversion. However, there is still a great challenge in achieving a satisfactory performance. It is noticed that organic solar cells (OSCs, light-harvesting device based on photovoltaic effect) commonly require hole/electron transport layer materials (TLMs), PEDOT:PSS (PE) and PDINN (PD), respectively, to promote the energy conversion. Inspired by such a strategy, an artificial proton pump by coupling a nanofluidic system with TLMs is proposed, in which the PE- and PD-functionalized tungsten disulfide (WS2 ) multilayers construct a heterogeneous membrane, realizing an excellent output power of ≈1.13 nW. The proton transport is fine-regulated due to the TLMs-engineered band structure of WS2 . Clearly, the incorporating TLMs of OSCs into 2D nanofluidic systems offers a feasible and promising approach for band edge engineering and promoting the light-to-ionic energy conversion.

4.
Small ; 16(1): e1905557, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805218

RESUMO

Nacre-mimetic 2D nanofluidic materials with densely packed sub-nanometer-height lamellar channels find widespread applications in water-, energy-, and environment-related aspects by virtue of their scalable fabrication methods and exceptional transport properties. Recently, light-powered nanofluidic ion transport in synthetic materials gained considerable attention for its remote, noninvasive, and active control of the membrane transport property using the energy of light. Toward practical application, a critical challenge is to overcome the dependence on inhomogeneous or site-specific light illumination. Here, asymmetric photonic-ionic devices based on kirigami-tailored graphene oxide paper are fabricated, and directional nanofluidic ion transport properties therein powered by full-area light illumination are demonstrated. The in-plane asymmetry of the graphene oxide paper is essential to the generation of photoelectric driving force under homogeneous illumination. This light-powered ion transport phenomenon is explained based on a modified carrier diffusion model. In asymmetric nanofluidic structures, enhanced recombination of photoexcited charge carriers at the membrane boundary breaks the electric potential balance in the horizontal direction, and thus drives the ion transport in that direction under symmetric illumination. The kirigami-based strategy provides a facile and scalable way to fabricate paper-like photonic-ionic devices with arbitrary shapes, working as fundamental elements for large-scale light-harvesting nanofluidic circuits.

5.
ACS Appl Mater Interfaces ; 16(30): 39321-39329, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39024512

RESUMO

Biological photoresponsive ion transport systems consistently attract researchers' attention owing to their remarkable functions of harvesting energy from nature and participating in visual perception systems. Designing and constructing artificial light-driven ion transport devices to mimic biological counterparts remains a challenge owing to fabrication limitations in nanoconfined spaces. Herein, a typical conjugated polyelectrolyte (PFN-Br) was assembled onto a laminated MoS2M using simple solution-processing vacuum filtration, resulting in a heterogeneous three- and two-dimensional nanoporous membrane. The designed band alignment between PFN-Br and MoS2 enables effective directional ion transport under irradiation in an equilibrium solution, even against a 30-fold concentration gradient. The staggered energy structure of PFN-Br and MoS2 enhances charge separation and establishes a photogenerated potential as the driving force for ion transport. Additionally, the activation energy barrier for ion transport across the heterogeneous membrane decreased by 60% after light irradiation, considerably improving ion transport flux. The easy fabrication and high performance of the membrane in light-powered ion transport provide promising approaches for designing nanofluidic devices with possible applications in energy conversion, light-enhanced biosensing, and photoresponsive ionic devices.

6.
Biosens Bioelectron ; 218: 114741, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36209531

RESUMO

Light-driven proton directional transport is important in living beings as it could subtly realize the light energy conversion for living uses. In the past years, 2D materials-based nanochannels have shown great potential in active ion transport due to controllable properties, including surface charge distribution, wettability, functionalization, electric structure, and external stimuli responsibility, etc. However, to fuse the inorganic materials into bio-membranes still faces several challenges. Here, we proposed peptide-modified WS2 nanosheets via cysteine linkers to realize tunable band structure and, hence, enable light-driven proton transmembrane transport. The modification was achieved through the thiol chemistry of the -SH groups in the cysteine linker and the S vacancy on the WS2 nanosheets. By tuning the amino residues sequences (lysine-rich peptides, denoted as KFC; and aspartate-rich peptides, denoted as DFC), the ζ-potential, surface charge, and band energy of WS2 nanosheets could be rationally regulated. Janus membranes formed by assembling the peptide-modified WS2 nanosheets could realize the proton transmembrane transport under visible light irradiation, driven by a built-in potential due to a type II band alignment between the KFC-WS2 and DFC-WS2. As a result, the proton would be driven across the formed nanochannels. These results demonstrate a general strategy to build bio-semiconductor materials and provide a new way for embedding inorganic materials into biological systems toward the development of bioelectronic devices.


Assuntos
Técnicas Biossensoriais , Prótons , Cisteína , Ácido Aspártico , Lisina , Transporte de Íons , Semicondutores , Peptídeos
7.
Adv Mater ; 33(14): e2007529, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33656226

RESUMO

Nanofluidic ion transport through van der Waals heterostructures, composed of two or more types of reconstructed 2D nanomaterials, gives rise to fascinating opportunities for light-energy harvesting, due to coupling between the optoelectronic properties of the layered constituents and ion transport in between the atomic layers. Here, a photoinduced active ion transport phenomenon through transition metal dichalcogenides (TMDs)-based van-der-Waals-like multilayer heterostructures is reported for harnessing ionic power from equilibrium electrolyte solution. The binary heterostructure comprises sequentially stacked 2D-WS2 and 2D-MoS2 multilayers with sub-1 nm interlayer spacing. Upon visible-light illumination, a net ionic flow is initiated through the Janus membrane, suggesting a directional cationic transport from WS2 to MoS2 part. The transport mechanism is explained in terms of a photovoltaic effect due to type II band alignment of WS2 /MoS2 heterostructures. The driving mechanism can be generally applied to a variety of heterogeneous TMD membranes with type II semiconductor heterojunctions. In equilibrium ionic solutions, the maximum ionic photoresponse approaches ≈21 µA cm-2 and ≈45 mV under one sun equivalent excitation. Under optimized conditions, the harvested power density reaches 2 mW m-2 . The proof-of-concept demonstration of photonic-to-ionic power generation within angstrom-scale confinement anticipates potential for light-controlled ionic circuits, artificial photosynthesis, and biomimetic energy conversion.

8.
Adv Mater ; 31(36): e1903029, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31339197

RESUMO

Biological electrogenic systems use protein-based ionic pumps to move salt ions uphill across a cell membrane to accumulate an ion concentration gradient from the equilibrium physiological environment. Toward high-performance and robust artificial electric organs, attaining an antigradient ion transport mode by fully abiotic materials remains a great challenge. Herein, a light-driven proton pump transport phenomenon through a Janus graphene oxide membrane (JGOM) is reported. The JGOM is fabricated by sequential deposition of graphene oxide (GO) nanosheets modified with photobase (BOH) and photoacid (HA) molecules. Upon ultraviolet light illumination, the generation of a net protonic photocurrent through the JGOM, from the HA-GO to the BOH-GO side, is observed. The directional proton flow can thus establish a transmembrane proton concentration gradient of up to 0.8 pH units mm-2 membrane area at a proton transport rate of 3.0 mol h-1 m-2 . Against a concentration gradient, antigradient proton transport can be achieved. The working principle is explained in terms of asymmetric surface charge polarization on HA-GO and BOH-GO multilayers triggered by photoisomerization reactions, and the consequent intramembrane proton concentration gradient. The implementation of membrane-scale light-harvesting 2D nanofluidic system that mimics the charge process of the bioelectric organs makes a straightforward step toward artificial electrogenic and photosynthetic applications.

10.
Chem Sci ; 8(6): 4381-4386, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28660062

RESUMO

The bottom-up assembly of ion-channel-mimetic nanofluidic devices and materials with two-dimensional (2D) nano-building blocks paves a straightforward way towards the real-world applications of the novel transport phenomena on a nano- or sub-nanoscale. One immediate challenge is to provide the 2D nanofluidic systems with adaptive responsibilities and asymmetric ion transport characteristics. Herein, we introduce a facile and general strategy to provide a graphene-oxide-based 2D nanofluidic system with photo-switchable ionic current rectification (ICR). The degree of ICR can be prominently enhanced upon UV irradiation and it can be perfectly retrieved under irradiation with visible light. A maximum ICR ratio of about 48 was achieved. The smart and functional nanofluidic devices have applications in energy conversion, chemical sensing, water treatment, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA