Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 170, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265689

RESUMO

The deep-sea environment is an extremely difficult habitat for microorganisms to survive in due to its intense hydrostatic pressure. However, the mechanisms by which these organisms adapt to such extreme conditions remain poorly understood. In this study, we investigated the metabolic adaptations of Microbacterium sediminis YLB-01, a cold and stress-tolerant microorganism isolated from deep-sea sediments, in response to high-pressure conditions. YLB-01 cells were cultured at normal atmospheric pressure and 28 ℃ until they reached the stationary growth phase. Subsequently, the cells were exposed to either normal pressure or high pressure (30 MPa) at 4 ℃ for 7 days. Using NMR-based metabolomic and proteomic analyses of YLB-01 cells exposed to high-pressure conditions, we observed significant metabolic changes in several metabolic pathways, including amino acid, carbohydrate, and lipid metabolism. In particular, the high-pressure treatment stimulates cell division and triggers the accumulation of UDP-glucose, a critical factor in cell wall formation. This finding highlights the adaptive strategies used by YLB-01 cells to survive in the challenging high-pressure environments of the deep sea. Specifically, we discovered that YLB-01 cells regulate amino acid metabolism, promote carbohydrate metabolism, enhance cell wall synthesis, and improve cell membrane fluidity in response to high pressure. These adaptive mechanisms play essential roles in supporting the survival and growth of YLB-01 in high-pressure conditions. Our study offers valuable insights into the molecular mechanisms underlying the metabolic adaptation of deep-sea microorganisms to high-pressure environments. KEY POINTS: • NMR-based metabolomic and proteomic analyses were conducted on Microbacterium sediminis YLB-01 to investigate the significant alterations in several metabolic pathways in response to high-pressure treatment. • YLB-01 cells used adaptive strategies (such as regulated amino acid metabolism, promoted carbohydrate metabolism, enhanced cell wall synthesis, and improved cell membrane fluidity) to survive in the challenging high-pressure environment of the deep sea. • High-pressure treatment stimulated cell division and triggered the accumulation of UDP-glucose, a critical factor in cell wall formation, in Microbacterium sediminis YLB-01 cells.


Assuntos
Actinomycetales , Proteômica , Aminoácidos , Glucose , Difosfato de Uridina , Microbacterium
2.
Curr Microbiol ; 79(4): 95, 2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35150317

RESUMO

Microbes living in extreme environments often adopt strategies for survival, however, only a few studies have examined the adaptive mechanism of deep-sea bacteria in in-situ environments. In this study, transcriptomic data of the deep-sea piezotolerant and psychrotolerant actinomycete Microbacterium sediminis YLB-01 under the conditions of NPNT (normal temperature and pressure: 28 °C, 0.1 MPa), HPNT (normal temperature and high pressure: 28 °C, 30 MPa), NPLT (low temperature and atmospheric pressure: 4 °C, 0.1 MPa) and HPLT (low temperature and high pressure: 4 °C, 30 MPa) were examined and compared. Transcriptome results showed that M. sediminis YLB-01 responds to deep-sea low temperature under high-pressure environments by upregulating the ABC transport system, DNA damage repair response, pentose phosphate pathway, amino acid metabolism and fatty acid metabolism, while down-regulating division, oxidative phosphorylation, the TCA cycle, pyruvate metabolism, ion transport and peptidoglycan biosynthesis. Seven key genes specifically expressed under HPLT conditions were screened, and these genes are present in many strains that are tolerant to low temperatures and high pressures. This study provides transcription level insights into the tolerance mechanisms of M. sediminis YLB-01 in a simulated deep-sea in situ environment.


Assuntos
Actinomycetales , Transcriptoma , Actinomycetales/genética , Pressão Hidrostática , Microbacterium , Temperatura
3.
Environ Microbiol ; 23(2): 744-756, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32657519

RESUMO

Shewanella strains are characterized by versatile metabolic capabilities, resulting in their wide distribution in the ocean at different depths. Considering that particle sedimentation is an important dynamic process in the ocean, we hypothesized that hadal Shewanella species evolved from the upper ocean. In this study, we isolated three novel Shewanella strains from deep-sea sediments in the Southwest Indian Ocean. Genome sequencing indicated that strains YLB-06 and YLB-08 represent two novel species in the genus Shewanella. Through phylogenomic analysis, we showed that speciation and genomic changes in marine Shewanella strains are related to water depth. We further confirmed the aforementioned hypothesis and revealed a two-stage process of the evolutionary transition of Shewanella from the upper ocean to the hadal zone by comparative genomics and gene gain/loss analysis. Finally, the transcriptomic analysis demonstrated that recently obtained genes are strictly repressed and may thus play a minor role in the response to environmental changes.


Assuntos
Evolução Biológica , Genoma Bacteriano/genética , Sedimentos Geológicos/microbiologia , Shewanella/genética , Evolução Molecular , Perfilação da Expressão Gênica , Genômica , Oceano Índico , Filogenia , RNA Ribossômico 16S/genética , Shewanella/classificação , Shewanella/isolamento & purificação , Transcriptoma/genética
4.
Appl Environ Microbiol ; 84(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29269502

RESUMO

Oxidative stresses commonly exist in natural environments, and microbes have developed a variety of defensive systems to counteract such events. Although increasing evidence has shown that high hydrostatic pressure (HHP) and low temperature (LT) induce antioxidant defense responses in cells, there is no direct evidence to prove the connection between antioxidant defense mechanisms and the adaptation of bacteria to HHP and LT. In this study, using the wild-type (WT) strain of a deep-sea bacterium, Shewanella piezotolerans WP3, as an ancestor, we obtained a mutant, OE100, with an enhanced antioxidant defense capacity by experimental evolution under H2O2 stress. Notably, OE100 exhibited better tolerance not only to H2O2 stress but also to HHP and LT (20 MPa and 4°C, respectively). Whole-genome sequencing identified a deletion mutation in the oxyR gene, which encodes the transcription factor that controls the oxidative stress response. Comparative transcriptome analysis showed that the genes associated with oxidative stress defense, anaerobic respiration, DNA repair, and the synthesis of flagella and bacteriophage were differentially expressed in OE100 compared with the WT at 20 MPa and 4°C. Genetic analysis of oxyR and ccpA2 indicated that the OxyR-regulated cytochrome c peroxidase CcpA2 significantly contributed to the adaptation of WP3 to HHP and LT. Taken together, these results confirmed the inherent relationship between antioxidant defense mechanisms and the adaptation of a benthic microorganism to HHP and LT.IMPORTANCE Oxidative stress exists in various niches, including the deep-sea ecosystem, which is an extreme environment with conditions of HHP and predominantly LT. Although previous studies have shown that HHP and LT induce antioxidant defense responses in cells, direct evidence to prove the connection between antioxidant defense mechanisms and the adaptation of bacteria to HHP and LT is lacking. In this work, using the deep-sea bacterium Shewanella piezotolerans WP3 as a model, we proved that enhancement of the adaptability of WP3 to HHP and LT can benefit from its antioxidant defense mechanism, which provided useful insight into the ecological roles of antioxidant genes in a benthic microorganism and contributed to an improved understanding of microbial adaptation strategies in deep-sea environments.


Assuntos
Antioxidantes/metabolismo , Evolução Biológica , Temperatura Baixa , Pressão Hidrostática , Shewanella/fisiologia , Adaptação Fisiológica , Peróxido de Hidrogênio/farmacologia , Shewanella/genética , Estresse Fisiológico , Ativação Transcricional
5.
Appl Environ Microbiol ; 83(18)2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28687647

RESUMO

Dimethyl sulfoxide (DMSO) acts as a substantial sink for dimethyl sulfide (DMS) in deep waters and is therefore considered a potential electron acceptor supporting abyssal ecosystems. Shewanella piezotolerans WP3 was isolated from west Pacific deep-sea sediments, and two functional DMSO respiratory subsystems are essential for maximum growth of WP3 under in situ conditions (4°C/20 MPa). However, the relationship between these two subsystems and the electron transport pathway underlying DMSO reduction by WP3 remain unknown. In this study, both DMSO reductases (type I and type VI) in WP3 were found to be functionally independent despite their close evolutionary relationship. Moreover, immunogold labeling of DMSO reductase subunits revealed that the type I DMSO reductase was localized on the outer leaflet of the outer membrane, whereas the type VI DMSO reductase was located within the periplasmic space. CymA, a cytoplasmic membrane-bound tetraheme c-type cytochrome, served as a preferential electron transport protein for the type I and type VI DMSO reductases, in which type VI accepted electrons from CymA in a DmsE- and DmsF-independent manner. Based on these results, we proposed a core electron transport model of DMSO reduction in the deep-sea bacterium S. piezotolerans WP3. These results collectively suggest that the possession of two sets of DMSO reductases with distinct subcellular localizations may be an adaptive strategy for WP3 to achieve maximum DMSO utilization in deep-sea environments.IMPORTANCE As the dominant methylated sulfur compound in deep oceanic water, dimethyl sulfoxide (DMSO) has been suggested to play an important role in the marine biogeochemical cycle of the volatile anti-greenhouse gas dimethyl sulfide (DMS). Two sets of DMSO respiratory systems in the deep-sea bacterium Shewanella piezotolerans WP3 have previously been identified to mediate DMSO reduction under in situ conditions (4°C/20 MPa). Here, we report that the two DMSO reductases (type I and type VI) in WP3 have distinct subcellular localizations, in which type I DMSO reductase is localized to the exterior surface of the outer membrane and type VI DMSO reductase resides in the periplasmic space. A core electron transport model of DMSO reduction in WP3 was constructed based on genetic and physiological data. These results will contribute to a comprehensive understanding of the adaptation mechanisms of anaerobic respiratory systems in benthic microorganisms.

6.
Appl Environ Microbiol ; 82(8): 2388-2398, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26873312

RESUMO

Although the histone-like nucleoid structuring protein (H-NS) is well known for its involvement in the adaptation of mesophilic bacteria, such as Escherichia coli, to cold environments and high-pressure stress, an understanding of the role of H-NS in the cold-adapted benthic microorganisms that live in the deep-sea ecosystem, which covers approximately 60% of the earth's surface, is still lacking. In this study, we characterized the function of H-NS in Shewanella piezotolerans WP3, which was isolated from West Pacific sediment at a depth of 1,914 m. Anhns gene deletion mutant (WP3Δhns) was constructed, and comparative whole-genome microarray analysis was performed. H-NS had a significant influence (fold change, >2) on the expression of a variety of WP3 genes (274 and 280 genes were upregulated and downregulated, respectively), particularly genes related to energy production and conversion. Notably, WP3Δhnsexhibited higher expression levels of lateral flagellar genes than WP3 and showed enhanced swarming motility and lateral flagellar production compared to those of WP3. The DNA gel mobility shift experiment showed that H-NS bound specifically to the promoter of lateral flagellar genes. Moreover, the high-affinity binding sequences of H-NS were identified by DNase I protection footprinting, and the results support the "binding and spreading" model for H-NS functioning. To our knowledge, this is the first attempt to characterize the function of the universal regulator H-NS in a deep-sea bacterium. Our data revealed that H-NS has a novel function as a repressor of the expression of genes related to the energy-consuming secondary flagellar system and to swarming motility.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Flagelos/fisiologia , Regulação Bacteriana da Expressão Gênica , Biogênese de Organelas , Shewanella/genética , Shewanella/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Pegada de DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Deleção de Genes , Perfilação da Expressão Gênica , Sedimentos Geológicos , Locomoção , Análise em Microsséries , Oceano Pacífico , Regiões Promotoras Genéticas , Ligação Proteica , Shewanella/isolamento & purificação , Shewanella/fisiologia
7.
Appl Environ Microbiol ; 81(16): 5519-26, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26048946

RESUMO

A low-temperature-inducible protein expression vector (pSW2) based on a filamentous phage (SW1) of the deep-sea bacterium Shewanella piezotolerans WP3 was constructed. This vector replicated stably in Escherichia coli and Shewanella species, and its copy number increased at low temperatures. The pSW2 vector can be utilized as a complementation plasmid in WP3, and it can also be used for the production of complex cytochromes with multiple heme groups, which has the potential for application for metal ion recovery or bioremediation. Promoters of low-temperature-inducible genes in WP3 were fused into the vector to construct a series of vectors for enhancing protein expression at low temperature. The maximum green fluorescent protein intensity was obtained when the promoter for the hfq gene was used. The WP3/pSW2 system can efficiently produce a patatin-like protein (PLP) from a metagenomic library that tends to form inclusion bodies in E. coli. The yields of PLP in the soluble fraction were 8.3 mg/liter and 4.7 mg/liter of culture at 4°C and 20°C, respectively. Moreover, the pSW2 vector can be broadly utilized in other Shewanella species, such as S. oneidensis and S. psychrophila.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Vetores Genéticos , Inovirus/genética , Plasmídeos , Shewanella/genética , Shewanella/virologia , Fusão Gênica Artificial , Replicação do DNA , Genes Reporter , Genética Microbiana/métodos , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Inovirus/isolamento & purificação , Biologia Molecular/métodos , Regiões Promotoras Genéticas , Recombinação Genética , Temperatura
8.
Wei Sheng Wu Xue Bao ; 55(10): 1264-72, 2015 Oct 04.
Artigo em Zh | MEDLINE | ID: mdl-26939454

RESUMO

OBJECTIVE: Type III secretion system (T3SS) is essential for many phytopathogenic bacteria to cause disease in susceptible host plants and to elicit a hypersensitive response in resistant host and non-host plants. Xanthomonas campestris pv. campestris (Xcc) uses T3SS to deliver T3SS effectors (T3SEs) directly into host cells, where they play important roles in pathogenesis. The aim of this study was to identify a new T3SE in Xcc. METHODS: To validate if XC3176 is a T3S effector translocated into plant cells, the promoter and signal region of XC3176 were fused to the plasmid pLJB of harboring HR-inducing AvrBs1 C-terminal domain lack of 58 N-terminal amino acid residues. The recombinant plasmid pLJB3176 was introduced by triparental conjugation into ΔavrBs1 and ΔhrcV. Hypersensitive response induced by the obtained strains ΔavrBs1/pLJB3176 and ΔhrcV/pLJB3176 were examined on the pepper ECW-10R. To determine transcription of XC3176, GUS fusion report strains were constructed. The virulence of Xcc strains was investigated on the Chinese radish by the leaf-clipping method. RESULTS: Hypersensitive response was elicited on the pepper ECW-10R by the strain ΔavrBs1/pLJB3176, but not ΔhrcV/pLJB3176. The GUS activities in the mutant strains ΔhrpX and ΔhrpG were significantly lower than that in the wild type Xcc strain. The mutant of XC3176 reduced virulence significantly and the complementary strain C3176 could restore the virulence as the wild-type strain. CONCLUSION: XC3176 is a T3SS-dependent effector of Xanthomonas campestris pv. campestris. The expression of XC3176 is regulated by hrpG and hrpX. XC3176 is required for the full virulence of Xcc 8004.


Assuntos
Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Sistemas de Secreção Tipo III/metabolismo , Xanthomonas campestris/metabolismo , Proteínas de Bactérias/genética , Capsicum/microbiologia , Regulação Bacteriana da Expressão Gênica , Folhas de Planta/microbiologia , Sistemas de Secreção Tipo III/genética , Virulência , Xanthomonas campestris/genética , Xanthomonas campestris/isolamento & purificação , Xanthomonas campestris/patogenicidade
9.
Microbiol Spectr ; 12(2): e0326323, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38170979

RESUMO

Prophages are prevalent in the marine bacterial genomes and reshape the physiology and metabolism of their hosts. However, whether and how prophages influence the microbial degradation of D-amino acids (D-AAs), which is one of the widely distributed recalcitrant dissolved organic matters (RDOMs) in the ocean, remain to be explored. In this study, we addressed this issue in a representative marine bacterium, Shewanella psychrophila WP2 (WP2), and its integrated prophage SP1. Notably, compared to the WP2 wild-type strain, the SP1 deletion mutant of WP2 (WP2ΔSP1) exhibited a significantly lower D-glutamate (D-Glu) consumption rate and longer lag phase when D-Glu was used as the sole nitrogen source. The subsequent transcriptome analysis identified 1,523 differentially expressed genes involved in diverse cellular processes, especially that multiple genes related to inorganic nitrogen metabolism were highly upregulated. In addition, the dynamic profiles of ammonium, nitrate, and nitrite were distinct between the culture media of WP2 and WP2ΔSP1. Finally, we provide evidence that SP1 conferred a competitive advantage to WP2 when D-Glu was used as the sole nitrogen source and SP1-like phages may be widely distributed in the global ocean. Taken together, these findings offer novel insight into the influences of prophages on host metabolism and RDOM cycling in marine environments.IMPORTANCEThis work represents the first exploration of the impact of prophages on the D-amino acid (D-AA) metabolism of deep-sea bacteria. By using S. psychrophila WP2 and its integrated prophage SP1 as a representative system, we found that SP1 can significantly increase the catabolism rate of WP2 to D-glutamate and produce higher concentrations of ammonium, resulting in faster growth and competitive advantages. Our findings not only deepen our understanding of the interaction between deep-sea prophages and hosts but also provide new insights into the ecological role of prophages in refractory dissolved organic matter and the nitrogen cycle in deep oceans.


Assuntos
Compostos de Amônio , Shewanella , Prófagos/genética , Aminoácidos , Ácido Glutâmico , Shewanella/genética , Nitrogênio
10.
Appl Environ Microbiol ; 79(22): 7101-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24038680

RESUMO

Low-temperature ecosystems represent the largest biosphere on Earth, and yet our understanding of the roles of bacteriophages in these systems is limited. Here, the influence of the cold-active filamentous phage SW1 on the phenotype and gene transcription of its host, Shewanella piezotolerans WP3 (WP3), was investigated by construction of a phage-free strain (WP3ΔSW1), which was compared with the wild-type strain. The expression of 49 genes, including 16 lateral flagellar genes, was found to be significantly influenced by SW1 at 4°C, as demonstrated by comparative whole-genome microarray analysis. WP3ΔSW1 was shown to have a higher production of lateral flagella than WP3 and enhanced swarming motility when cultivated on solid agar plates. Besides, SW1 has a remarkable impact on the expression of a variety of host genes in liquid culture, particularly the genes related to the membrane and to the production of lateral flagella. These results suggest that the deep-sea bacterium WP3 might balance the high-energy demands of phage maintenance and swarming motility at low temperatures. The phage SW1 is shown to have a significant influence on the swarming ability of the host and thus may play an important role in adjusting the fitness of the cells in the deep-sea environment.


Assuntos
Temperatura Baixa , Flagelos/metabolismo , Inovirus/fisiologia , Shewanella/genética , Genes Bacterianos , Processamento de Imagem Assistida por Computador , Inovirus/isolamento & purificação , Microscopia Eletrônica de Transmissão , Análise de Sequência com Séries de Oligonucleotídeos , RNA Bacteriano/genética , Shewanella/crescimento & desenvolvimento , Shewanella/virologia
11.
Appl Microbiol Biotechnol ; 97(11): 4977-89, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23624682

RESUMO

High-throughput Illumina RNA-seq was used for deep sequencing analysis of the transcriptome of poly(A)+ RNA from mycelium grown under three different conditions: 30 days darkness (sample 118), 80 days darkness (313W), and 30 days darkness followed by 50 days in the light (313C), in order to gain insight into the molecular mechanisms underlying the process of light-induced brown film (BF) formation in the edible mushroom, Lentinula edodes. Of the three growth conditions, BF formation occurred in 313C samples only. Approximately 159.23 million reads were obtained, trimmed, and de novo assembled into 31,511 contigs with an average length of 1,746 bp and an N 50 of 2,480 bp. Based on sequence orientations determined by a BLASTX search against the NR, Swiss-Prot, COG, and KEGG databases, 24,246 (76.9 %) contigs were assigned putative descriptions. Comparison of 313C/118 and 313C/313W expression profiles revealed 3,958 and 5,651 significantly differentially expressed contigs (DECs), respectively. Annotation using the COG database revealed that candidate genes for light-induced BF formation encoded proteins linked to light reception (e.g., WC-1, WC-2, phytochrome), light signal transduction pathways (e.g., two-component phosphorelay system, mitogen-activated protein kinase pathway), and pigment formation (e.g., polyketide synthase, O-methyltransferase, laccase, P450 monooxygenase, oxidoreductase). Several DECs were validated using quantitative real-time polymerase chain reaction. Our report is the first to identify genes associated with light-induced BF formation in L. edodes and represents a valuable resource for future genomic studies on this commercially important mushroom.


Assuntos
Perfilação da Expressão Gênica , Luz , Pigmentos Biológicos/biossíntese , Cogumelos Shiitake/genética , Cogumelos Shiitake/efeitos da radiação , Transdução de Sinais , Sequenciamento de Nucleotídeos em Larga Escala , Cogumelos Shiitake/metabolismo
12.
Microbiol Spectr ; 11(4): e0282322, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37347174

RESUMO

Lentinula edodes is one of the most widely cultivated edible mushrooms in the world. When cultivated in sawdust, the surface mycelium of L. edodes needs a long postripening stage wherein it forms a brown film (BF) by secreting and accumulating pigments. BF formation is critical for the high quality and yield of fruiting bodies. Protein lysine acetylation (KAC) is an important post-translational modification that regulates growth and development. Previous studies have shown that deacetylase levels are significantly increased during BF formation in the postripening stage of L. edodes. The aim of this study was to assess the role of protein acetylation during BF formation. To this end, we compared the acetylome of L. edodes mycelia before and after BF formation using anti-acetyl antibody-based label-free quantitative proteomics. We identified 5,613 acetylation sites in 1,991 proteins, and quantitative information was available for 4,848 of these sites in 1,815 proteins. Comparative acetylome analysis showed that the modification of 699 sites increased and that of 562 sites decreased during BF formation. Bioinformatics analysis of the differentially acetylated proteins showed significant enrichment in the tricarboxylic acid (TCA) cycle and proteasome pathways. Furthermore, functional assays showed that BF formation is associated with significant changes in the activities of proteasome, citrate synthase, and isocitrate dehydrogenase. Consistent with this hypothesis, the lysine deacetylase inhibitor trichostatin (TSA) delayed autophagy and BF formation in L. edodes. Taken together, KAC and autophagy play important roles in the mycelial BF formation and postripening stage of L. edodes. IMPORTANCE Mycelial BF formation and postripening of L. edodes affects the quality and quantity of its edible fruiting bodies. In this study, we explored the role of protein KAC in this biological process, with the aim of optimizing the cultivation and yield of L. edodes.


Assuntos
Cogumelos Shiitake , Cogumelos Shiitake/metabolismo , Lisina/metabolismo , Acetilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Micélio , Autofagia
13.
ISME J ; 17(7): 1015-1028, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37069234

RESUMO

Phages are prevalent in diverse environments and play major ecological roles attributed to their tremendous diversity and abundance. Among these viruses, transposable phages (TBPs) are exceptional in terms of their unique lifestyle, especially their replicative transposition. Although several TBPs have been isolated and the life cycle of the representative phage Mu has been extensively studied, the diversity distribution and ecological functions of TBPs on the global scale remain unknown. Here, by mining TBPs from enormous microbial genomes and viromes, we established a TBP genome dataset (TBPGD), that expands the number of accessible TBP genomes 384-fold. TBPs are prevalent in diverse biomes and show great genetic diversity. Based on taxonomic evaluations, we propose the categorization of TBPs into four viral groups, including 11 candidate subfamilies. TBPs infect multiple bacterial phyla, and seem to infect a wider range of hosts than non-TBPs. Diverse auxiliary metabolic genes (AMGs) are identified in the TBP genomes, and genes related to glycoside hydrolases and pyrimidine deoxyribonucleotide biosynthesis are highly enriched. Finally, the influences of TBPs on their hosts are experimentally examined by using the marine bacterium Shewanella psychrophila WP2 and its infecting transposable phage SP2. Collectively, our findings greatly expand the genetic diversity of TBPs, and comprehensively reveal their potential influences in various ecosystems.


Assuntos
Bacteriófagos , Vírus , Bacteriófagos/genética , Ecossistema , Genoma Viral , Vírus/genética , Bactérias/genética
14.
Nat Commun ; 14(1): 6013, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758717

RESUMO

Viruses are ubiquitous in the oceans, exhibiting high abundance and diversity. Here, we systematically analyze existing genomic sequences of marine prokaryotes to compile a Marine Prokaryotic Genome Dataset (MPGD, consisting of over 12,000 bacterial and archaeal genomes) and a Marine Temperate Viral Genome Dataset (MTVGD). At least 40% of the MPGD genomes contain one or more proviral sequences, indicating that they are lysogens. The MTVGD includes over 12,900 viral contigs or putative proviruses, clustered into 10,897 viral genera. We show that lysogens and proviruses are abundant in marine ecosystems, particularly in the deep sea, and marine lysogens differ from non-lysogens in multiple genomic features and growth properties. We reveal several virus-host interaction networks of potential ecological relevance, and identify proviruses that appear to be able to infect (or to be transferred between) different bacterial classes and phyla. Auxiliary metabolic genes in the MTVGD are enriched in functions related to carbohydrate metabolism. Finally, we experimentally demonstrate the impact of a prophage on the transcriptome of a representative marine Shewanella bacterium. Our work contributes to a better understanding of the ecology of marine prokaryotes and their viruses.


Assuntos
Provírus , Vírus , Provírus/genética , Ecossistema , Oceanos e Mares , Genoma Viral , Bactérias/genética , Vírus/genética , Filogenia
15.
mSystems ; 7(4): e0058822, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35950761

RESUMO

Microbial acclimation to different temperature conditions can involve broad changes in cell composition and metabolic efficiency. A systems-level view of these metabolic responses in nonmesophilic organisms, however, is currently missing. In this study, thermodynamically constrained genome-scale models were applied to simulate the metabolic responses of a deep-sea psychrophilic bacterium, Shewanella psychrophila WP2, under suboptimal (4°C), optimal (15°C), and supraoptimal (20°C) growth temperatures. The models were calibrated with experimentally determined growth rates of WP2. Gibbs free energy change of reactions (ΔrG'), metabolic fluxes, and metabolite concentrations were predicted using random simulations to characterize temperature-dependent changes in the metabolism. The modeling revealed the highest metabolic efficiency at the optimal temperature, and it suggested distinct patterns of ATP production and consumption that could lead to lower metabolic efficiency under suboptimal or supraoptimal temperatures. The modeling also predicted rearrangement of fluxes through multiple metabolic pathways, including the glycolysis pathway, Entner-Doudoroff pathway, tricarboxylic acid (TCA) cycle, and electron transport system, and these predictions were corroborated through comparisons to WP2 transcriptomes. Furthermore, predictions of metabolite concentrations revealed the potential conservation of reducing equivalents and ATP in the suboptimal temperature, consistent with experimental observations from other psychrophiles. Taken together, the WP2 models provided mechanistic insights into the metabolism of a psychrophile in response to different temperatures. IMPORTANCE Metabolic flexibility is a central component of any organism's ability to survive and adapt to changes in environmental conditions. This study represents the first application of thermodynamically constrained genome-scale models in simulating the metabolic responses of a deep-sea psychrophilic bacterium to various temperatures. The models predicted differences in metabolic efficiency that were attributed to changes in metabolic pathway utilization and metabolite concentration during growth under optimal and nonoptimal temperatures. Experimental growth measurements were used for model calibration, and temperature-dependent transcriptomic changes corroborated the model-predicted rearrangement of metabolic fluxes. Overall, this study highlights the utility of modeling approaches in studying the temperature-driven metabolic responses of an extremophilic organism.


Assuntos
Ciclo do Ácido Cítrico , Redes e Vias Metabólicas , Temperatura , Redes e Vias Metabólicas/genética , Metabolismo dos Carboidratos , Trifosfato de Adenosina
16.
Microbiol Spectr ; 10(3): e0198821, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768947

RESUMO

The unique geological features of hadal trenches are known to influence both the structure and ecological function of microbial communities. It is also well known that heterotrophs and chemoautotrophs dominate the hadal and abyssal pelagic zones, respectively. Here, a metagenomic investigation was conducted on sediment samples obtained from the abyssal-hadal transition zone in the Mariana Trench to gain a better understanding of the general diversity and potential function of the core microbiome in this zone. A high level of cosmopolitanism existed in the core microbiome referred from a high community similarity among different stations. Niche differentiation along the fine-scale of different sediment layers was observed, especially for major archaeal groups, largely due to sediment depth and the source of organic matter. A prevalence of nitrogen biogeochemical cycles driven by various nitrifying groups with the capability of dark carbon fixation in the abyssal-hadal biosphere was also demonstrated. The predominance of heterotrophic over chemolithoautotrophic pathways in this transition zone was found, and a high abundance of genes related to respiration and carbon fixation (i.e., the intact Calvin and rTCA cycles) were detected as well, which might reflect the intensive microbial activities known to occur in this deep biosphere. The presence of those metabolic processes and associated microbes were reflected by functional and genetic markers generated from the metagenomic data in the current study. However, their roles and contributions to the nitrogen/carbon biogeochemical cycles and flux in the abyssal-hadal transition zone still need further analysis. IMPORTANCE The Mariana Trench is the deepest oceanic region on earth, its microbial ecological exploration has become feasible with the rapid progress of submersible and metagenomic sequencing. We investigated the community compositions and metabolic functions of the core microbiome along the abyssal-hadal transition zone of the Mariana Trench, although most studies by far were focused on the pelagic zone. We found a predominance of heterotrophic groups and related metabolic pathways, which were closely associated with nitrogen biogeochemical cycles driven by various nitrifying groups with the capability of dark carbon fixation.


Assuntos
Bactérias , Microbiota , Archaea/genética , Bactérias/genética , Bactérias/metabolismo , Microbiota/genética , Nitrogênio/metabolismo , Oceanos e Mares
17.
Front Microbiol ; 13: 811673, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283832

RESUMO

Lentinula edodes (Berk.) Pegler, the shiitake mushroom, is one of the most important mushrooms in the global mushroom industry. Although mycelium post ripeness and brown film (BF) formation are crucial for fruiting body initiation, the underlying molecular mechanisms of BF formation are largely unknown. In this study, proteomic quantification (relative and absolute) and metabolomic profiling of L. edodes were performed using isobaric tags and gas chromatography-mass spectroscopy, respectively. A total of 2,474 proteins were identified, which included 239 differentially expressed proteins. Notably, several proteins associated with autophagy were upregulated, including RPD3, TOR1, VAC8, VPS1, and VPS27. Transmission electron microscopy also indicated that autophagy occurred in post ripeness and BF formation. In time-dependent analysis of the metabolome, metabolites associated with oxidative stress and autophagy changed significantly, including mannitol, trehalose, myo-inositol, glucose, leucine, valine, glutamine, and 4-aminobutyric acid. Thus, oxidative stress and autophagy were important processes in post ripeness and BF formation in L. edodes, and new insights were gained into molecular mechanisms at proteome and metabolome levels.

18.
mSystems ; 7(1): e0135821, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089086

RESUMO

Viruses are ubiquitous in the oceans. Even in the deep sediments of the Mariana Trench, viruses have high productivity. However, little is known about their species composition and survival strategies in that environment. Here, we uncovered novel viral communities (3,206 viral scaffolds) in the upper slope sediments of the Mariana Trench via metagenomic analysis of 15 sediment samples. Most (99%) of the viral scaffolds lack known viral homologs, and ca. 59% of the high-quality viral genomes (total of 111 with completeness of >90%) represent novel genera, including some Phycodnaviridae and jumbo phages. These viruses contain various auxiliary metabolic genes (AMGs) potentially involved in organic carbon degradation, inorganic carbon fixation, denitrification, and assimilatory sulfate reduction, etc. This study provides novel insight into the almost unknown benthic viral communities in the Mariana Trench. IMPORTANCE The Mariana Trench harbors a substantial number of infective viral particles. However, very little is known about the identity, survival strategy, and potential functions of viruses in the trench sediments. Here, through metagenomic analysis, unusual benthic viral communities with high diversity and novelty were discovered. Among them, 59% of the viruses with a genome completeness of >90% represent novel genera. Various auxiliary metabolic genes carried by these viruses reflect the potential adaptive characteristics of viruses in this extreme environment and the biogeochemical cycles that they may participate in. This study gives us a deeper understanding of the peculiarities of viral communities in deep-sea/hadal sediments.


Assuntos
Bactérias , Sedimentos Geológicos , Carbono/metabolismo , Nitrogênio/metabolismo , Enxofre/metabolismo
19.
Microbiol Spectr ; 10(6): e0338822, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36301121

RESUMO

Members from the Inoviridae family with striking features are widespread, highly diverse, and ecologically pervasive across multiple hosts and environments. However, a small number of inoviruses have been isolated and studied. Here, a filamentous phage infecting Alteromonas abrolhosensis, designated ϕAFP1, was isolated from the South China Sea and represented a novel genus of Inoviridae. ϕAFP1 consisted of a single-stranded DNA genome (5986 bp), encoding eight putative ORFs. Comparative analyses revealed ϕAFP1 could be regarded as genetic mosaics having homologous sequences with Ralstonia and Stenotrophomonas phages. The temporal transcriptome analysis of A. abrolhosensis to ϕAFP1 infection revealed that 7.78% of the host genes were differentially expressed. The genes involved in translation processes, ribosome pathways, and degradation of multiple amino acid pathways at the plateau period were upregulated, while host material catabolic and bacterial motility-related genes were downregulated, indicating that ϕAFP1 might hijack the energy of the host for the synthesis of phage proteins. ϕAFP1 exerted step-by-step control on host genes through the appropriate level of utilizing host resources. Our study provided novel information for a better understanding of filamentous phage characteristics and phage-host interactions. IMPORTANCE Alteromonas is widely distributed and plays a vital role in biogeochemical in marine environments. However, little information about Alteromonas phages is available. Here, we isolated and characterized the biological characteristics and genome sequence of a novel inovirus infecting Alteromonas abrolhosensis, designated ϕAFP1, representing a novel viral genus of Inoviridae. We then presented a comprehensive view of the ϕAFP1 phage-Alteromonas abrolhosensis interactions, elucidating reprogramed host metabolism and motility. Our study provided novel information for better comprehension of filamentous phage characteristics and phage-host interactions.


Assuntos
Alteromonas , Bacteriófagos , Inovirus , Inovirus/genética , China , Genoma Viral , Filogenia
20.
Microbiome ; 10(1): 92, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701838

RESUMO

BACKGROUND: Prokaryote-virus interactions play key roles in driving biogeochemical cycles. However, little is known about the drivers shaping their interaction network structures, especially from the host features. Here, we compiled 7656 species-level genomes in 39 prokaryotic phyla across environments globally and explored how their interaction specialization is constrained by host life history traits, such as growth rate. RESULTS: We first reported that host growth rate indicated by the reverse of minimal doubling time was negatively related to interaction specialization for host in host-provirus network across various ecosystems and taxonomy groups. Such a negative linear growth rate-specialization relationship (GrSR) was dependent on host optimal growth temperature (OGT), and stronger toward the two gradient ends of OGT. For instance, prokaryotic species with an OGT ≥ 40 °C showed a stronger GrSR (Pearson's r = -0.525, P < 0.001). Significant GrSRs were observed with the presences of host genes in promoting the infection cycle at stages of adsorption, establishment, and viral release, but nonsignificant with the presence of immune systems, such as restriction-modification systems and CRISPR-Cas systems. Moreover, GrSR strength was increased with the presence of temperature-dependent lytic switches, which was also confirmed by mathematical modeling. CONCLUSIONS: Together, our results advance our understanding of the interactions between prokaryotes and proviruses and highlight the importance of host growth rate in interaction specialization during lysogenization. Video Abstract.


Assuntos
Provírus , Vírus , Ecossistema , Células Procarióticas , Provírus/genética , Temperatura , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA