Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(2): 216-221, 2021 Mar.
Artigo em Zh | MEDLINE | ID: mdl-33829694

RESUMO

OBJECTIVE: To investigate the effect of acrolein on the proliferation of pulmonary epithelial cells and its possible mechanism. METHODS: Two strains of pulmonary epithelial cells, A549 cells and MLE15 cells, were used as in vitro models of pulmonary epithelial cell, and were treated with 80 µmol/L acrolein or phosphate buffer saline (PBS) as the control. The proliferation of pulmonary epithelial cells were determined with CCK-8 kit after cell culturing resumed for 12 h, 24 h, 36 h and 48 h post acrolein treatment, and the expression of period circadian regulator gene 1 ( Per1) was examined using Western blot test 24 h after acrolein treatment. In addition, after acrolein treatment, the cells were restored with transforming growth factor-ß (TGF-ß) added in the medium, and the cell proliferation and the expression of Per1 protein were also examined. RESULTS: The proliferation of A549 cells and MLE15 cells decreased significantly after being treated with 80 µmol/L acrolein for 30 min, and the expression of Per1 protein was also downregulated significantly ( P<0.05). The addition of TGF-ß after acrolein treatment did not significantly change the reduction in cell proliferation caused by acrolein, but the expression of Per1 protein in pulmonary epithelial cells was significantly higher than that in cells restored without TGF-ß ( P<0.05). CONCLUSION: Acrolein treatment resulted in the decreased proliferation of pulmonary epithelial cells and the Per1 expression in pulmonary epithelial cells. Although TGF-ß addition did not reverse the reduction of cell proliferation after acrolein treatment, the Per1 expression levels were recovered to a certain extent compared to that in cells restored in medium without TGF-ß after acrolein treatment.


Assuntos
Acroleína , Células Epiteliais , Acroleína/farmacologia , Proliferação de Células , Expressão Gênica , Pulmão
2.
Int J Mol Sci ; 16(8): 16966-80, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26225956

RESUMO

Smoothened (Smo)-mediated Hedgehog (Hh) signaling pathway governs the patterning, morphogenesis and growth of many different regions within animal body plans. This study evaluated the effects of genetic variations of the bovine SMO gene on economically important body size traits in Chinese Qinchuan cattle. Altogether, eight single nucleotide polymorphisms (SNPs: 1-8) were identified and genotyped via direct sequencing covering most of the coding region and 3'UTR of the bovine SMO gene. Both the p.698Ser.>Ser. synonymous mutation resulted from SNP1 and the p.700Ser.>Pro. non-synonymous mutation caused by SNP2 mapped to the intracellular C-terminal tail of bovine Smo protein; the other six SNPs were non-coding variants located in the 3'UTR. The linkage disequilibrium was analyzed, and five haplotypes were discovered in 520 Qinchuan cattle. Association analyses showed that SNP2, SNP3/5, SNP4 and SNP6/7 were significantly associated with some body size traits (p < 0.05) except SNP1/8 (p > 0.05). Meanwhile, cattle with wild-type combined haplotype Hap1/Hap1 had significantly (p < 0.05) greater body length than those with Hap2/Hap2. Our results indicate that variations in the SMO gene could affect body size traits of Qinchuan cattle, and the wild-type haplotype Hap1 together with the wild-type alleles of these detected SNPs in the SMO gene could be used to breed cattle with superior body size traits. Therefore, our results could be helpful for marker-assisted selection in beef cattle breeding programs.


Assuntos
Tamanho Corporal/genética , Bovinos/anatomia & histologia , Bovinos/genética , Variação Genética , Característica Quantitativa Herdável , Receptores Acoplados a Proteínas G/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Frequência do Gene/genética , Loci Gênicos , Marcadores Genéticos , Haplótipos/genética , Desequilíbrio de Ligação/genética , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
3.
Int J Biol Sci ; 12(9): 1150-4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27570489

RESUMO

Regeneration of the epithelium of mammalian lungs is essential for restoring normal function following injury, and various cells and mechanisms contribute to this regeneration and repair. Club cells, bronchioalveolar stem cells (BASCs), and alveolar type II epithelial cells (ATII) are dominant stem/progenitor cells for maintaining epithelial turnover and repair. Epithelial Na(+) channels (ENaC), a critical pathway for transapical salt and fluid transport, are expressed in lung epithelial progenitors, including club and ATII cells. Since ENaC activity and expression are development- and differentiation-dependent, apically located ENaC activity has therefore been used as a functional biomarker of lung injury repair. ENaC activity may be involved in the migration and differentiation of local and circulating stem/progenitor cells with diverse functions, eventually benefiting stem cells spreading to re-epithelialize injured lungs. This review summarizes the potential roles of ENaC expressed in native progenitor and stem cells in the development and regeneration of the respiratory epithelium.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Pulmão/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA