RESUMO
In this study, the chloroplast genome of Asarum sieboldii f. seoulense was sequenced, analyzed, and compared with chloroplast genomes of other medicinal plants in Aristolochiaceae downloaded from GenBank, aiming to clarify the characteristics of the chloroplast genome of A. sieboldii f. seoulense and the differences in chloroplast genome among medicinal plants of Aristolochiaceae. To be specific, the chloroplast genome of A. sieboldii f. seoulense was sequenced and assembled by high-throughput sequencing, and the general characteristics, repeats, inverted repeat(IR) boundary, and phylogenetic relationship of the chloroplast genomes of 11 medicinal species in Aristolochiaceae were analyzed with REPuter. The result showed that the genome of A. sieboldii f. seoulense was 167 293 bp, with large single-copy(LSC) region of 89 840 bp, small single-copy(SSC) region of 21 415 bp, IR region of 28 019 bp, and GC content of 37.9%. A total of 133 genes were annotated, including 89 protein-coding genes, 36 tRNA genes and 8 rRNA genes. The chloroplast genomes of the 11 medicinal species were 159 308-167 293 bp, with 130-134 genes annotated. Forward(F), reverse(R), complement(C), and palindromic(P) long repeats and simple sequence repeat(SSR) were found in the chloroplast genomes of five species. Among them, A. sieboldii f. seoulense had six types of SSR. In the phylogenetic tree, A. sieboldii f. seoulense and A. heterotropoides were in the same clade. The result is expected to lay a basis for the classification, identification, and phylogeny of medicinal plants in Aristolochiaceae.
Assuntos
Aristolochiaceae , Genoma de Cloroplastos , Plantas Medicinais , Aristolochiaceae/genética , Repetições de Microssatélites , Filogenia , Plantas Medicinais/genéticaRESUMO
This study compares the accuracy and safety of pedicle screw placement using a 3D navigation template with the free-hand fluoroscopy technique in scoliotic patients. Fifteen scoliotic patients were recruited and divided into a template group (eight cases) and a free-hand group (seven cases). All patients received posterior corrective surgeries, and the pedicle screw was placed using a 3D navigation template or a free-hand technique. After surgery, the positions of the pedicle screws were evaluated using CT. A total of 264 pedicle screws were implanted in 15 patients. Both the two techniques were found to achieve satisfactory safety of screw insertion in scoliotic patients (89.9% vs. 90.5%). In the thoracic region, the 3D navigation template was able to achieve a much higher accuracy of screw than the free-hand technique (75.3% vs. 60.4%). In the two groups, the accuracy rates on the convex side were slightly higher than on the concave side, while no significance was seen. In terms of rotational vertebrae, no significant differences were seen in Grades I or II vertebrae between the two groups. In conclusion, the 3D navigation template technique significantly increased the accuracy of thoracic pedicle screw placement, which held great potential for extensively clinical application.
RESUMO
Brucellosis is a highly contagious zoonotic and systemic infectious disease caused by Brucella, which seriously affects public health and socioeconomic development worldwide. Particularly, in China accumulating eco-environmental changes and agricultural intensification have increased the expansion of human brucellosis (HB) infection. As a traditional animal husbandry area adjacent to Inner Mongolia, Datong City in northwestern China is characterized by a high HB incidence, demonstrating obvious variations in the risk pattern of HB infection in recent years. In this study, we built Bayesian spatiotemporal models to detect the transfer of high-risk clusters of HB occurrence in Datong from 2005 to 2020. Geographically and Temporally Weighted Regression and GeoDetector were employed to investigate the synergistic driving effects of multiple potential risk factors. Results confirmed an evident dynamic expansion of HB from the east to the west and south in Datong. The distribution of HB showed a negative correlation with urbanization level, economic development, population density, temperature, precipitation, and wind speed, while a positive correlation with the normalized difference vegetation index, and grassland/cropland cover areas. Especially, the local animal husbandry and related industries imposed a large influence on the spatiotemporal distribution of HB. This work strengthens the understanding of how HB spatial heterogeneity is driven by environmental factors, through which helpful insights can be provided for decision-makers to formulate and implement disease control strategies and policies for preventing the further spread of HB.