Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Immunol ; 210(1): 72-81, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36426999

RESUMO

Fish possess a powerful IFN system to defend against aquatic virus infections. Nevertheless, spring viremia of carp virus (SVCV) causes large-scale mortality in common carp and significant economic losses to aquaculture. Therefore, it is necessary to investigate the strategies used by SVCV to escape the IFN response. In this study, we show that the SVCV nucleoprotein (N protein) negatively regulates cellular IFN production by degrading stimulator of IFN genes (STING) via the autophagy-lysosome-dependent pathway. First, overexpression of N protein inhibited the IFN promoter activation induced by polyinosinic-polycytidylic acid and STING. Second, the N protein associated with STING and experiments using a dominant-negative STING mutant demonstrated that the N-terminal transmembrane domains of STING were indispensable for this interaction. Then, the N protein degraded STING in a dose-dependent and autophagy-lysosome-dependent manner. Intriguingly, in the absence of STING, individual N proteins could not elicit host autophagic flow. Furthermore, the autophagy factor Beclin1 was found to interact with the N protein to attenuate N protein-mediated STING degradation after beclin1 knockdown. Finally, the N protein remarkably weakened STING-enhanced cellular antiviral responses. These findings reveal that SVCV uses the host autophagic process to achieve immune escape, thus broadening our understanding of aquatic virus pathogenesis.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Proteínas do Nucleocapsídeo , Viremia , Proteína Beclina-1 , Rhabdoviridae/fisiologia , Lisossomos , Autofagia
2.
PLoS Pathog ; 18(6): e1010626, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35727817

RESUMO

From insects to mammals, both innate and adaptive immune response are usually higher in females than in males, with the sex chromosome and hormonal differences considered the main reasons. Here, we report that zebrafish cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a), an autosomal gene with female-biased expression, causes female fish to exhibit a lower antiviral response. First, we successfully constructed an infection model by intraperitoneal injection of spring viremia of carp virus (SVCV) into zebrafish (Danio rerio) and Carassius auratus herpesvirus (CaHV) in gibel carp (Carassius gibelio). Specifically, female fish were more vulnerable to viral infection than males, accompanied by a significantly weaker interferon (IFN) expression. After screening several candidates, cyp19a1a, which was highly expressed in female fish tissues, was selected for further analysis. The IFN expression and antiviral response were significantly higher in cyp19a1a-/- than in cyp19a1a+/+. Further investigation of the molecular mechanism revealed that Cyp19a1a targets mediator of IRF3 activation (MITA) for autophagic degradation. Interestingly, in the absence of MITA, Cyp19a1a alone could not elicit an autophagic response. Furthermore, the autophagy factor ATG14 (autophagy-related 14) was found interacted with Cyp19a1a to either promote or attenuate Cyp19a1a-mediated MITA degradation by either being overexpressed or knocked down, respectively. At the cellular level, both the normal and MITA-enhanced cellular antiviral responses were diminished by Cyp19a1a. These findings demonstrated a sex difference in the antiviral response based on a regulation mechanism controlled by a female-biased gene besides sex chromosome and hormonal differences, supplying the current understanding of sex differences in fish.


Assuntos
Carpas , Doenças dos Peixes , Herpesviridae , Animais , Antivirais/farmacologia , Autofagia , Feminino , Imunidade Inata/genética , Masculino , Mamíferos , Peixe-Zebra/genética
3.
J Immunol ; 208(9): 2196-2206, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35418468

RESUMO

In the viral infection process, host gene function is usually reported as either defending the host or assaulting the virus. In this study, we demonstrated that zebrafish ceramide kinase-like (CERKL) mediates protection against viral infection via two distinct mechanisms: stabilization of TANK-binding kinase 1 (TBK1) through impairing K48-linked ubiquitination and degradation of spring viremia of carp virus (SVCV) P protein by dampening K63-linked ubiquitination, resulting in an improvement of the host immune response and a decline in viral activity in epithelioma papulosum cyprini (EPC) cells. On SVCV infection, ifnφ1 expression was increased or blunted by CERKL overexpression or knockdown, respectively. Subsequently, we found that CERKL localized in the cytoplasm, where it interacted with TBK1 and enhanced its stability by impeding the K48-linked polyubiquitination; meanwhile, the antiviral capacity of TBK1 was significantly potentiated by CERKL. In contrast, CERKL also interacted with and degraded SVCV P protein to disrupt its function in viral proliferation. Further mechanism analysis revealed K63-linked deubiquitination is the primary means of CERKL-mediated SVCV P protein degradation. Taken together, our study reveals a novel mechanism of fish defense against viral infection: the single gene cerkl is both a shield for the host and a spear against the virus, which strengthens resistance.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Animais , Vírus de DNA , Fosfotransferases (Aceptor do Grupo Álcool) , Rhabdoviridae , Ubiquitinação , Proteínas Virais , Viremia , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38556382

RESUMO

BACKGROUND: Pancreatic cancer is a common malignancy with poor prognosis and limited treatment. Here we aimed to investigate the role of host chromosomal instability (CIN) and tumor microbiome in the prognosis of pancreatic cancer patients. METHODS: One hundred formalin-fixed paraffin-embedded (FFPE) pancreatic cancer samples were collected. DNA extracted from FFPE samples were analyzed by low-coverage whole-genome sequencing (WGS) via a customized bioinformatics workflow named ultrasensitive chromosomal aneuploidy detector. RESULTS: Samples are tested according to the procedure of ultrasensitive chromosomal aneuploidy detector (UCAD). We excluded 2 samples with failed quality control, 1 patient lost to follow-up and 6 dead in the perioperative period. The final 91 patients were admitted for the following analyses. Thirteen (14.3%) patients with higher CIN score had worse overall survival (OS) than those with lower CIN score. The top 20 microbes in pancreatic cancer samples included 15 species of bacteria and 5 species of viruses. Patients with high human herpesvirus (HHV)-7 and HHV-5 DNA reads exhibited worse OS. Furthermore, we classified 91 patients into 3 subtypes. Patients with higher CIN score (n =13) had the worst prognosis (median OS 6.9 mon); patients with lower CIN score but with HHV-7/5 DNA load (n = 24) had worse prognosis (median OS 10.6 mon); while patients with lower CIN score and HHV-7/5 DNA negative (n = 54) had the best prognosis (median OS 21.1 mon). CONCLUSIONS: High CIN and HHV-7/5 DNA load were associated with worse survival of pancreatic cancer. The novel molecular subtypes of pancreatic cancer based on CIN and microbiome had prognostic value.

5.
PLoS Pathog ; 17(2): e1009317, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600488

RESUMO

The transmembrane protein 33 (TMEM33) was originally identified as an endoplasmic reticulum (ER) protein that influences the tubular structure of the ER and modulates intracellular calcium homeostasis. However, the role of TMEM33 in antiviral immunity in vertebrates has not been elucidated. In this article, we demonstrate that zebrafish TMEM33 is a negative regulator of virus-triggered interferon (IFN) induction via two mechanisms: mitochondrial antiviral signaling protein (MAVS) ubiquitination and a decrease in the kinase activity of TANK binding kinase 1 (TBK1). Upon stimulation with viral components, tmem33 was remarkably upregulated in the zebrafish liver cell line. The IFNφ1 promoter (IFNφ1pro) activity and mRNA level induced by retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) were significantly inhibited by TMEM33. Knockdown of TMEM33 increased host ifn transcription. Subsequently, we found that TMEM33 was colocalized in the ER and interacted with the RLR cascades, whereas MAVS was degraded by TMEM33 during the K48-linked ubiquitination. On the other hand, TMEM33 reduced the phosphorylation of mediator of IFN regulatory factor 3 (IRF3) activation (MITA)/IRF3 by acting as a decoy substrate of TBK1, which was also phosphorylated. A functional domain assay revealed that the N-terminal transmembrane domain 1 (TM1) and TM2 regions of TMEM33 were necessary for IFN suppression. Finally, TMEM33 significantly attenuated the host cellular antiviral capacity by blocking the IFN response. Taken together, our findings provide insight into the different mechanisms employed by TMEM33 in cellular IFN-mediated antiviral process.


Assuntos
Regulação da Expressão Gênica , Interferons/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Infecções por Rhabdoviridae/virologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Fígado/imunologia , Fígado/virologia , Proteínas de Membrana/genética , Fosforilação , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/metabolismo , Ubiquitinação , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
J Immunol ; 207(2): 512-522, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34193603

RESUMO

Fish IFN regulatory factor 3 (IRF3) is a crucial transcription factor in the IFN activation signaling pathway, which leads to IFN production and a positive cycle. Unrestricted IFN expression results in hyperimmune responses and therefore, IFN must be tightly regulated. In the current study, we found that zebrafish Ub-activating enzyme (Uba1) negatively regulated IRF3 via the K-48 ubiquitin proteasome degradation of IRF3. First, ifn expression stimulated by spring viraemia of carp virus infection was blunted by the overexpression of Uba1 and enhanced by Uba1 knockdown. Afterward, we found that Uba1 was localized in the cytoplasm, where it interacted with and degraded IRF3. Functional domains analysis revealed that the C-terminal ubiquitin-fold domain was necessary for IRF3 degradation by Uba1 and the N-terminal DNA-binding domain of IRF3 was indispensable for the degradation by Uba1.The degradation of IRF3 was subsequently impaired by treatment with MG132, a ubiquitin proteasome inhibitor. Further mechanism analysis revealed that Uba1 induced the K48-linked Ub-proteasomal degradation of IRF3. Finally, the antiviral capacity of IRF3 was significantly attenuated by Uba1. Taken together, our study reveals that zebrafish Uba1 interacts with and activates the ubiquitinated degradation of IRF3, providing evidence of the IFN immune balance mechanism in fish.


Assuntos
Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Ubiquitinação/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Antivirais/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Ligação Proteica/fisiologia , Proteólise , Transdução de Sinais/fisiologia , Ubiquitina/imunologia
7.
Molecules ; 24(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443550

RESUMO

Herbicide safeners selectively protect crops from herbicide injury while maintaining the herbicidal effect on the target weed. To some extent, the detoxification of herbicides is related to the effect of herbicide safeners on the level and activity of herbicide target enzymes. In this work, the expression of the detoxifying enzyme glutathione S-transferase (GST) and antioxidant enzyme activities in maize seedlings were studied in the presence of three potential herbicide safeners: 3-dichloroacetyl oxazolidine and its two optical isomers. Further, the protective effect of chiral herbicide safeners on detoxifying chlorsulfuron in maize was evaluated. All safeners increased the expression levels of herbicide detoxifying enzymes, including GST, catalase (CAT), and peroxidase (POD) to reduce sulfonylurea herbicide phytotoxicity in maize seedlings. Our results indicate that the R-isomer of 3-(dichloroacetyl)-2,2,5-trimethyl-1,3-oxazolidine can induce glutathione (GSH) production, GST activity, and the ability of GST to react with the substrate 1-chloro-2,4-dinitrobenzene (CDNB) in maize, meaning that the R-isomer can protect maize from damage by chlorsulfuron. Information about antioxidative enzyme activity was obtained to determine the role of chiral safeners in overcoming the oxidative stress in maize attributed to herbicides. The interaction of safeners and active target sites of acetolactate synthase (ALS) was demonstrated by molecular docking modeling, which indicated that both isomers could form a good interaction with ALS. Our findings suggest that the detoxification mechanism of chiral safeners might involve the induction of the activity of herbicide detoxifying enzymes as well as the completion of the target active site between the safener and chlorsulfuron.


Assuntos
Inativação Metabólica/efeitos dos fármacos , Oxazóis/química , Oxazóis/farmacologia , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Acetolactato Sintase/química , Acetolactato Sintase/metabolismo , Sítios de Ligação , Catalase/metabolismo , Domínio Catalítico , Glutationa/metabolismo , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peroxidase/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Zea mays/química
8.
Zhonghua Bing Li Xue Za Zhi ; 41(2): 107-11, 2012 Feb.
Artigo em Zh | MEDLINE | ID: mdl-22455887

RESUMO

OBJECTIVE: To investigate whether FTY720 inhibits rat mesangial proliferation and extracellular matrix expansion through suppression of transforming growth factor ß1-connective tissue growth factor (TGFß1-CTGF) pathway, and to explore experimental evidence for its effect on mesangial proliferative glomerulonephritis. METHODS: A rat model of anti-Thy-1 mesangial proliferative glomerulonephritis was established and FTY720 intervention was performed. Periphery blood lymphocyte count, urine protein excretion, glomerular mesangial proliferation, protein and gene expression of TGFß1 and CTGF and extracellular matrix protein including fibronectin, laminin and collagen IV in isolated glomeruli were documented at 1, 3 and 7 days after injection of anti-Thy-1 antibody. RESULTS: The model group developed proteinuria at 1, 3 and 7 days after injection of anti-Thy-1 antibody, which were significantly higher [(27.9 ± 7.3), (63.5 ± 18.8) and (52.4 ± 15.4)mg/d, respectively] than those in the control group [(8.4 ± 2.4), (8.4 ± 2.1) and (10.4 ± 3.2) mg/d; respectively, P < 0.01]. FTY720 intervention group showed significantly decreased proteinuria at 3 and 7 days after injection [(31.4 ± 7.0), (25.5 ± 7.7) mg/d, respectively] than model group (P < 0.01), although higher than the control group (P < 0.01). After intervention for 3 and 7 days, FTY720 significantly down-regulated both TGFß1 and CTGF gene and protein expression in cultured glomeruli, and suppressed the production of glomerular extracellular matrix protein secretion, leading to attenuated mesangial cell proliferation and extracellular matrix expansion in rat anti-Thy-1 mesangial proliferative glomerulonephritis. CONCLUSION: FTY720 significantly attenuates mesangial proliferation and extracellular matrix expansion through inhibition of TGFß1-CTGF pathway in rat, and thus ameliorates the development of anti-Thy-1 mesangial proliferative glomerulonephritis.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Glomerulonefrite Membranoproliferativa/patologia , Propilenoglicóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Fator de Crescimento Transformador beta1/metabolismo , Animais , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/genética , Regulação para Baixo , Proteínas da Matriz Extracelular/metabolismo , Cloridrato de Fingolimode , Expressão Gênica , Mesângio Glomerular/metabolismo , Mesângio Glomerular/patologia , Glomerulonefrite Membranoproliferativa/imunologia , Glomerulonefrite Membranoproliferativa/metabolismo , Imunossupressores/farmacologia , Isoanticorpos/imunologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Proteinúria/urina , Ratos , Ratos Wistar , Esfingosina/farmacologia , Antígenos Thy-1/imunologia , Fator de Crescimento Transformador beta1/genética
9.
Front Immunol ; 12: 613145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833752

RESUMO

Fish interferon (IFN) is a crucial cytokine for a host to resist external pathogens, conferring cells with antiviral capacity. Meanwhile, grass carp reovirus (GCRV) is a strong pathogen that causes high mortality in grass carp. Therefore, it is necessary to study the strategy used by GCRV to evade the cellular IFN response. In this study, we found that GCRV 35-kDa protein (VP35) inhibited the host IFN production by degrading mitochondrial antiviral signaling (MAVS) protein through the autophagy pathway. First, the overexpression of VP35 inhibited the IFN activation induced by polyinosinic-polycytidylic acid (poly I:C) and MAVS, and the expression of downstream IFN-stimulated genes (ISGs) was also decreased by using VP35 under the stimulation. Second, VP35 interacted with MAVS; the experiments of truncated mutants of MAVS demonstrated that the caspase recruitment domain (CARD) and proline-rich (PRO) domains of MAVS were not necessary for this binding. Then, MAVS was degraded by using VP35 in a dose-dependent manner, and 3-MA (the autophagy pathway inhibitor) significantly blocked the degradation, meaning that MAVS was degraded by using VP35 in the autophagy pathway. The result of MAVS degradation suggested that the antiviral capacity of MAVS was remarkably depressed when interrupted by VP35. Finally, in the host cells, VP35 reduced ifn transcription and made the cells vulnerable to virus infection. In conclusion, our results reveal that GCRV VP35 impairs the host IFN response by degrading MAVS through the autophagy pathway, supplying evidence of a fish virus immune evasion strategy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doenças dos Peixes/metabolismo , Doenças dos Peixes/virologia , Interações Hospedeiro-Patógeno , Infecções por Reoviridae/veterinária , Reoviridae/fisiologia , Proteínas do Envelope Viral/metabolismo , Animais , Linhagem Celular , Proteína DEAD-box 58/metabolismo , Resistência à Doença , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferons/genética , Interferons/metabolismo , Poli I-C/imunologia , Transdução de Sinais
10.
Dev Comp Immunol ; 115: 103876, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32987012

RESUMO

In mammals, cyclic GMP-AMP synthase (cGAS) is a crucial cytosolic DNA sensor responsible for activating the interferon (IFN) response. A cGAS-like (cGASL) gene was previously identified from grass carp Ctenopharyngodon idellus, which is evolutionarily closest to cGAS but not a true ortholog of cGAS. Here, we found that grass carp cGASL targets mitochondrial antiviral signaling protein (MAVS) for autophagic degradation to negatively regulate fish IFN response. Firstly, the transcriptional level of cellular cgasl was upregulated by poly I:C stimulation, and overexpression of cGASL significantly decreased poly I:C- and MAVS-induced promoter activities and transcriptional levels of IFN and IFN-stimulated genes (ISGs). In addition, cGASL associated with MAVS and prompted autophagic degradation of MAVS in a dose-dependent manner. Finally, overexpression of cGASL attenuated MAVS-mediated cellular antiviral response. These results collectively indicate that cGASL negatively regulates fish IFN response by triggering autophagic degradation of MAVS.


Assuntos
Carpas/imunologia , Proteínas de Peixes/metabolismo , Interferons/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Autofagia/imunologia , Carpas/metabolismo , Imunidade Inata , Poli I-C/imunologia , Proteólise , Transdução de Sinais/imunologia
11.
Front Immunol ; 11: 545302, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193312

RESUMO

Viruses typically target host RIG-I-like receptors (RLRs), a group of key factors involved in interferon (IFN) production, to enhance viral infection. To date, though immune evasion methods to contradict IFN production have been characterized for a series of terrestrial viruses, the strategies employed by fish viruses remain unclear. Here, we report that all grass carp reovirus (GCRV) proteins encoded by segments S1 to S11 suppress mitochondrial antiviral signaling protein (MAVS)-mediated IFN expression. First, the GCRV viral proteins blunted the MAVS-induced expression of IFN, and impair MAVS antiviral capacity significantly. Interestingly, subsequent co-immunoprecipitation experiments demonstrated that all GCRV viral proteins interacted with several RLR cascades, especially with TANK-binding kinase 1 (TBK1) which was the downstream factor of MAVS. To further illustrate the mechanisms of these interactions between GCRV viral proteins and host RLRs, two of the viral proteins, NS79 (S4) and VP3 (S3), were selected as representative proteins for two distinguished mechanisms. The obtained data demonstrated that NS79 was phosphorylated by gcTBK1, leading to the reduction of host substrate gcIRF3/7 phosphorylation. On the other hand, VP3 degraded gcMAVS and the degradation was significantly reversed by 3-MA. The biological effects of both NS79 and VP3 were consistently found to be related to the suppression of IFN expression and the promotion of viral evasion. Our findings shed light on the special evasion mechanism utilized by fish virus through IFN regulation, which might differ between fish and mammals.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Carpas , Proteínas de Peixes/imunologia , Interferon gama/imunologia , Reoviridae/imunologia , Transdução de Sinais/imunologia , Animais , Carpas/imunologia , Carpas/virologia , Células HEK293 , Humanos , Proteínas Virais/imunologia
12.
Polymers (Basel) ; 11(9)2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31450656

RESUMO

The herbicide diuron is hardly soluble in water and most organic solvents and is usually made into a wettable powder or mixed with soil when used, which causes environmental risk and a reduction in herbicidal efficacy. In this study, the physicochemical properties were changed by using ß-cyclodextrin (ß-CD) to encapsulate diuron to form an inclusion complex. Some key technologies, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and nuclear magnetic resonance (1H NMR), were used to characterize the inclusion complex. The stoichiometry of the inclusion complex was determined by recording the 1H NMR spectrum or by using a diagram of inclusion ratios. A phase solubility study proved that the formed inclusion complex exhibited higher water solubility. Thermogravimetric analysis (TGA) demonstrated that the formed inclusion complex exhibited better thermal stability. Biological activity studies indicated that the herbicidal activity, in terms of herbicide removal, of the formed inclusion complex was higher than that of the original diuron. In general, the formation of the inclusion complex could reduce the environmental damage caused by diuron and enhance its herbicidal activity, providing an environmentally friendly method for using diuron.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA