Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Environ Manage ; 341: 118052, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141714

RESUMO

The aim of this investigation was to examine the microbial populations and their resistance patterns towards antibiotics, including the impact of nitrogen metabolism in response to the reintroduction of antibiotics, as well as the presence of resistance genes in sediments from shrimp ponds that have been utilized for extended periods of 5, 15, and over 30 years. Results showed that the sediments exhibited a high prevalence of Proteobacteria, Bacteroidetes, Planctomycetes, Chloroflexi, and Oxyphotobacteria as the most abundant bacterial phyla, accounting for 70.35-77.43% of the total bacterial community. The five most abundant phyla of fungi detected in all sediments, namely Rozellomycota, Ascomycota, Aphelidiomycota, Basidiomycota, and Mortierellomycota, constituted 24.26-32.54% of the total fungal community. It was highly probable that the Proteobacteria and Bacteroidetes phyla serve as the primary reservoir of antibiotic-resistant bacteria (ARB) in the sediment, which included various genera like Sulfurovum, Woeseia, Sulfurimonas, Desulfosarcina, and Robiginitalea. Among these genera, Sulfurovum appeared to be the most widespread in the sediment of aquaculture ponds that have been in operation for more than three decades, while Woeseia dominated in ponds that have been recently reclaimed and have a 15-year aquaculture history. Antibiotic resistance genes (ARGs) were categorized into seven distinct groups according to their mechanism of action. The prevalence of multidrug-resistant ARGs was found to be the highest among all types, with an abundance ranging from 8.74 × 10-2 to 1.90 × 10-1 copies per 16S rRNA gene copies. The results of a comparative analysis of sediment samples with varying aquaculture histories indicated that the total relative abundance of ARGs was significantly diminished in sediment with a 15-year aquaculture history as opposed to sediment with either a 5-year or 30-year aquaculture history. Another assessment of antibiotic resistances in aquaculture sediments involved an examination of the effects of reintroducing antibiotics on nitrogen metabolism processes. The findings revealed that the rates of ammonification, nitrification, and denitrification in the sediment with a history of 5 years and 15 years, decreased as the concentration of oxytetracycline increased from 1 to 300, and 2000 mg/kg, and inhibitory effects were found to be less pronounced in sediments with a 5-year history compared to those with a 15-year history. In contrast, oxytetracycline exposure led to a significant decrease in the rates of these processes in aquaculture pond sediments with a >30 years of aquaculture history across all the concentrations tested. The emergence and dissemination of antibiotic resistance profiles in aquaculture environments requires attention in future aquaculture management.


Assuntos
Microbiota , Oxitetraciclina , Genes Bacterianos , RNA Ribossômico 16S , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Antibacterianos/farmacologia , Aquicultura , Nitrogênio/farmacologia , Sedimentos Geológicos
2.
J Environ Manage ; 313: 114855, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390662

RESUMO

A magnetic FeCo2O4/Co3O4 nanocomposite was successfully synthesized by a facile hydrothermal method as an efficient activator for persulfate (PS) activation to degrade tetracycline (TC) in an aqueous solution. TC removal and mineralization efficiencies reached up to 91.63% and 43.57% in 120 min in the FCC-3/PS system, respectively. The mixed-valence of Fe/Co in the nanocomposite catalyst was beneficial for electrons transfer between Co and Fe elements and enhanced the redox circulation of Fe and Co in between divalent and trivalent. Surficial analysis and phosphate adsorption test confirmed the existence of -OH groups on the surfaces of FeCo2O4/Co3O4 nanocomposite. Fe/Co redox and surficial hydroxyl in the catalyst played significant roles in the TC potentiation degradation, which was contributed by the plenty of adsorbed -OH groups and excellent dispersity of FeCo2O4 in the FeCo2O4/Co3O4 composite. The sulfate radicals were major species followed by the hydroxyl radicals, and the surficial adsorbed hydroxyl made great contributions to radical generation. The cycling test and intermediate toxicity analysis indicated that the nanocomposite was considered stable and practicable in water treatment. This work demonstrated that the FeCo2O4/Co3O4 nanocomposite was an effective and environ-friendly catalyst towards PS activation for removing organic pollutants from water.


Assuntos
Tetraciclina , Poluentes Químicos da Água , Antibacterianos , Cobalto , Radical Hidroxila , Oxirredução , Óxidos , Poluentes Químicos da Água/análise
3.
Bull Environ Contam Toxicol ; 106(6): 1003-1008, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33772598

RESUMO

Cyclocarya paliurus seedlings were cultivated in three types of lead (Pb)-contaminated soils with Pb concentration of 305 ± 17 mg/kg (T1), 1964 ± 59 mg/kg (T2) and 3502 ± 107 mg/kg (T3), respectively. The results showed that after 180 days of cultivation, the contents of exchangeable and carbonate-bound Pb fractions significantly decreased in T1 and T2, but increased in T3. The growth indices of C. paliurus seedlings decreased with increasing Pb concentration; however, no difference was found between that in T1 and in Pb-free soil. The Pb concentration in the roots was an order of magnitude higher than that in the stems and in the leaves. The bioconcentration factor (BCF) of the leaves was the lowest among the three tissues investigated, and decreased with the higher concentration of Pb in the soils. These results suggest that C. paliurus can be used as a sustainable and profitable plant for the phytomanagement of Pb-contaminated soil.


Assuntos
Juglandaceae , Poluentes do Solo , Chumbo , Folhas de Planta , Solo
4.
Exp Mol Pathol ; 117: 104522, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866521

RESUMO

OBJECTIVE: This study aimed to investigate whether the protection of miR-302a-3p in myocardial ischemia-reperfusion injury (MIRI) is mediated through the suppression of mitophagy. METHODS: We constructed a mouse I/R model in vivo by the ligation of left anterior descending coronary artery for 45 min followed by 2 h reperfusion, and an in vitro model by treating mouse cardiomyocytes with hypoxia-reoxygenation (H/R). Knockdown experiments were then performed in vivo and in vitro to determine the effects of miR-302a-3p knockdown on the mitophagy, mitochondrial dysfunction and oxidative stress and apoptosis. The potential targets of miR-302a-3p were further studied by bioinformatics analysis, luciferase assays, quantitative real-time PCR and western blotting. RESULTS: MiR-302a-3p expression was significantly upregulated in mice subjected to MIRI and in H/R-treated mouse cardiomyocytes. Functional analyses demonstrated that inhibition of miR-302a-3p protected cardiac tissues against I/R-induced apoptosis and mitophagy, mitochondrial damage and mitochondrial oxidative stress. Furthermore, FOXO3 was identified as the direct target of miR-302a-3p. Mechanistically, knockdown of FOXO3 partially reversed the cardioprotective effects of miR-302a-3p inhibitor. CONCLUSION: Our study suggested that inhibition of miR-302a-3p promoted mitochondrial autophagy and inhibited oxidative stress by targeting FOXO3 to suppress myocardial apoptosis, representing a potential target for MIRI treatment.


Assuntos
Proteína Forkhead Box O3/genética , MicroRNAs/genética , Isquemia Miocárdica/genética , Traumatismo por Reperfusão/genética , Animais , Apoptose/genética , Vasos Coronários/patologia , Vasos Coronários/cirurgia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Ligadura , Camundongos , Mitofagia/genética , Isquemia Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/genética , Traumatismo por Reperfusão/patologia
5.
Molecules ; 25(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998378

RESUMO

Due to the low hydration activity and poor volume stability, extensive steel slag utilization is restricted. In this paper, the hydration process and microstructure of alkali-activated materials with steel slag as a cementitious material and fine aggregate were studied. The phase composition and micro-morphology of hydration products were measured using XRD, NMR and SEM. The response relationship between microstructure and mechanical properties during hydration was revealed. The results show that the main hydration products of the alkali-activated steel slag powder-granulated blast furnace slag powder cementitious system are Ca(OH)2 and calcium aluminosilicate hydrate (C-A-S-H) gel. With the progress of hydration, the amount of calcium silicate hydrate (C-S-H) gel and the average molecular chain length increase, Al[4]/Si decreases, while C/S increases first and then decreases, and the structure of cement paste becomes much more compact. The interface between steel slag sand and cement paste is denser than that of river sand, since the hydration occurs on the surface of steel slag sand, which leads to the formation of C-A-S-H gel and Ca(OH)2. As a result, the compressive strength of concrete prepared by steel slag sand is higher than that of river sand with the same mix proportion.


Assuntos
Materiais de Construção/análise , Resíduos Industriais/análise , Aço/química , Água/química , Espectroscopia de Ressonância Magnética , Propriedades de Superfície , Temperatura , Difração de Raios X
6.
J Environ Manage ; 217: 646-653, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29649736

RESUMO

Soil contamination is a serious problem with deleterious impacts on global sustainability. Readily available, economic, and highly effective technologies are therefore urgently needed for the rehabilitation of contaminated sites. In this study, two readily available materials prepared from bio-wastes, namely biochar and oyster shell waste, were evaluated as soil amendments to immobilize arsenic in a highly As-contaminated soil (up to 15,000 mgAs/kg). Both biochar and oyster shell waste can effectively reduce arsenic leachability in acid soils. After application of the amendments (2-4% addition, w/w), the exchangeable arsenic fraction decreased from 105.8 to 54.0 mg/kg. The application of 2%biochar +2% oyster shell waste most effectively reduced As levels in the column leaching test by reducing the arsenic concentration in the porewater by 62.3% compared with the treatment without amendments. Biochar and oyster shell waste also reduced soluble As(III) from 374.9 ± 18.8 µg/L to 185.9 ± 16.8 µg/L and As(V) from 119.8 ± 13.0 µg/L to 56.4 ± 2.6 µg/L at a pH value of 4-5. The treatment using 4% (w/w) amendments did not result in sufficient As immobilization in highly contaminated soils; high soluble arsenic concentrations (upto193.0 µg/L)were found in the soil leachate, particularly in the form of As(III), indicating a significant potential to pollute shallow groundwater aquifers. This study provides valuable insights into the use of cost-effective and readily available materials for soil remediation and investigates the mechanisms underlying arsenic immobilization in acidic soils.


Assuntos
Arsênio/química , Carvão Vegetal , Poluentes do Solo/química , Animais , Arsênio/isolamento & purificação , Ostreidae , Solo , Poluentes do Solo/isolamento & purificação
7.
Sci Total Environ ; 946: 174274, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942320

RESUMO

Limited attention has been given to the interaction between antibiotics and arsenic in the soil-plant system. In this investigation, Medicago sativa seedlings were grown in soil treated with cow manure containing oxytetracycline (OTC) or sulfadiazine (SD), as well as arsenic (introduced through roxarsone, referred to as ROX treatment). The study revealed a notable increase in As(III) and dimethylarsinic acid (DMA(V)) levels in rhizosphere soils and plant root tissues as arsenic contamination intensified in the presence of antibiotics, while concentrations of As(V) and monomethylarsonic acid (MMA(V)) decreased. Conversely, elevated antibiotic presence resulted in higher levels of As(V) but reduced DMA concentrations in both rhizosphere soils and plant root tissues in the presence of arsenic. The arsenic biotransformation gene aioA was inhibited by arsenic contamination when antibiotics were present, and suppressed by antibiotic contamination in the presence of arsenic, especially in SD treatments, resulting in reduced expression levels at higher SD concentrations. Conversely, the arsM gene exhibited consistent upregulation under all conditions. However, its expression was found to increase with higher concentrations of ROX in the presence of antibiotics, decrease with increasing SD concentrations, and initially rise before declining with higher levels of OTC in the presence of arsenic. Bacterial genera within the Proteobacteria phylum, such as Geobacter, Lusitaniella, Mesorhizobium, and Methylovirgula, showed significant co-occurrence with both aioA and arsM genes. Correlation analysis demonstrated associations between the four arsenic species and the two arsenic biotransformation genes, emphasizing pH as a critical factor influencing the transformation and uptake of different arsenic species in the soil-plant system. The combined stress of antibiotics and arsenic has the potential to modify arsenic behavior and associated risks in soil-plant systems, highlighting the necessity of considering this interaction in future research endeavors.

8.
Sci Rep ; 14(1): 9294, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653779

RESUMO

Coronavirus disease (COVID-19) and pulmonary hypertension (PH) are closely correlated. However, the mechanism is still poorly understood. In this article, we analyzed the molecular action network driving the emergence of this event. Two datasets (GSE113439 and GSE147507) from the GEO database were used for the identification of differentially expressed genes (DEGs).Common DEGs were selected by VennDiagram and their enrichment in biological pathways was analyzed. Candidate gene biomarkers were selected using three different machine-learning algorithms (SVM-RFE, LASSO, RF).The diagnostic efficacy of these foundational genes was validated using independent datasets. Eventually, we validated molecular docking and medication prediction. We found 62 common DEGs, including several ones that could be enriched for Immune Response and Inflammation. Two DEGs (SELE and CCL20) could be identified by machine-learning algorithms. They performed well in diagnostic tests on independent datasets. In particular, we observed an upregulation of functions associated with the adaptive immune response, the leukocyte-lymphocyte-driven immunological response, and the proinflammatory response. Moreover, by ssGSEA, natural killer T cells, activated dendritic cells, activated CD4 T cells, neutrophils, and plasmacytoid dendritic cells were correlated with COVID-19 and PH, with SELE and CCL20 showing the strongest correlation with dendritic cells. Potential therapeutic compounds like FENRETI-NIDE, AFLATOXIN B1 and 1-nitropyrene were predicted. Further molecular docking and molecular dynamics simulations showed that 1-nitropyrene had the most stable binding with SELE and CCL20.The findings indicated that SELE and CCL20 were identified as novel diagnostic biomarkers for COVID-19 complicated with PH, and the target of these two key genes, FENRETI-NIDE and 1-nitropyrene, was predicted to be a potential therapeutic target, thus providing new insights into the prediction and treatment of COVID-19 complicated with PH in clinical practice.


Assuntos
COVID-19 , Biologia Computacional , Hipertensão Pulmonar , Simulação de Acoplamento Molecular , Humanos , COVID-19/complicações , COVID-19/genética , COVID-19/imunologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/tratamento farmacológico , Biologia Computacional/métodos , SARS-CoV-2 , Aprendizado de Máquina , Biomarcadores , Tratamento Farmacológico da COVID-19
9.
J Pharm Biomed Anal ; 239: 115882, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38071766

RESUMO

Based on our experiences in bile acid profiling, this work developed and validated a liquid chromatography electrospray ionization tandem mass spectrometry method to separate endogenous bile acid isomers and quantitatively determine ursodeoxycholic acid (UDCA), glycoursodeoxycholic acid (GUDCA) and tauroursodeoxycholic acid (TUDCA) in human plasma. The separation was performed on a CORTECS C18 column with the mobile phase consisting of 1.0 mM ammonium acetate and acetonitrile-methanol (80:20, v/v). UDCA, GUDCA and TUDCA were detected in the negative mode on a triple-quadrupole mass spectrometer at the ion transitions of m/z 391 > 391, m/z 448 > 74, m/z 498 > 80, respectively. Phosphate buffer was employed as the surrogate matrix to establish the isotope internal standard corrected calibration curves of analytes. The background-method with a linearity range of 10-200 ng/mL was partially validated to determine the endogenous levels of analytes in blank human plasma, which was incorporated into the validation of bioequivalence-method with a linearity range of 50-10000 ng/mL. The bioequivalence (BE)-method was fully validated with special focus on matrix effects, which have been critically evaluated using the precision and accuracy of quality control samples prepared from the blank human plasma of 12 individuals. It is disclosed for the first time that the BE results of UDCA formulation may yield false results when the method is insufficient to separate UDCA from isoursodeoxycholic acid, a microbial metabolite of both endogenous and exogenous UDCA. The present method has established a milestone for the evaluation of UDCA formulations and is expected to provide a valuable reference for the bioanalytical development of endogenous medicinal products.


Assuntos
Ácidos e Sais Biliares , Ácido Ursodesoxicólico , Humanos , Equivalência Terapêutica , Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão/métodos
10.
J Huazhong Univ Sci Technolog Med Sci ; 33(6): 862-865, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24337849

RESUMO

Artemisinin, also termed qinghaosu, is extracted from the traditional Chinese medicine artemesia annua L. (the blue-green herb) in the early 1970s, which has been confirmed for effectively treating malaria. Additionally, emerging data prove that artemisinin exhibits anti-cancer effects against many types of cancers such as leukemia, melanoma, etc. Artemisinin becomes cytotoxic in the presence of ferrous iron. Since iron influx is high in cancer cells, artemisinin and its analogs selectively kill cancer cells with increased intracellular iron concentrations. This study is aimed to investigate the selective inhibitory effects of artemisinin on SMMC-7721 cells in vitro and determine the effect of holotransferrin, which increases the concentration of ferrous iron in cancer cells, combined with artemisinin on the anticancer activity. MTT assay was used for assessing the proliferation of SMMC-7721 cells treated with artemisinin. The induction of apoptosis and inhibition of colony formation in SMMC-7721 cells treated with artemisinin were determined by TdT-mediated dUTP nick end labeling (TUNEL) and colony formation assay, respectively. The results showed that artemisinin at various concentrations significantly inhibited growth, colony formation and cell viability of SMMC-7721 cells (P<0.05), likely due to induction of apoptosis of SMMC-7721 cells. Of interest, it was found that incubation of artemisinin combined with holotransferrin sensitized the growth inhibitory effect of artemisinin on SMMC-7721 cells (P<0.01). Our data suggest that treatment with artemisinin leads to inhibition of viability and proliferation, and apoptosis of SMMC-7721 cells. Furthermore, we observed that holotransferrin significantly enhanced the anti-cancer activity of artemisinin. This study may provide a potential therapeutic choice for liver cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Artemisininas/farmacologia , Transferrina/farmacologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Neoplasias Hepáticas/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-36833828

RESUMO

The constant application of manure-based fertilizers in vegetable farms leads to antibiotic residue accumulation in soils, which has become a major stressor affecting agroecosystem stability. The present study investigated the adaptation profiles of rhizosphere microbial communities in different vegetable farms to multiple residual antibiotics. Multiple antibiotics, including trimethoprim, sulfonamides, quinolones, tetracyclines, macrolides, lincomycins, and chloramphenicols, were detected in the vegetable farms; the dominant antibiotic (trimethoprim) had a maximum concentration of 36.7 ng/g. Quinolones and tetracyclines were the most prevalent antibiotics in the vegetable farms. The five most abundant phyla in soil samples were Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi and Firmicutes, while the five most abundant phyla in root samples were Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Myxococcota. Macrolides were significantly correlated with microbial community composition changes in soil samples, while sulfonamides were significantly correlated with microbial community composition changes in root samples. Soil properties (total carbon and nitrogen contents and pH) influenced the shifts in microbial communities in rhizosphere soils and roots. This study provides evidence that low residual antibiotic levels in vegetable farms can shift microbial community structures, potentially affecting agroecosystem stability. However, the degree to which the shift occurs could be regulated by environmental factors, such as soil nutrient conditions.


Assuntos
Microbiota , Quinolonas , Antibacterianos/análise , Fazendas , Verduras , Rizosfera , Bactérias , Solo/química , Tetraciclinas , Sulfanilamida , Trimetoprima , Macrolídeos , Microbiologia do Solo
12.
Environ Sci Process Impacts ; 25(7): 1224-1237, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37338821

RESUMO

Metal(loid)s can increase the spread and enrichment of antibiotic resistance in the environmental system by means of a co-selection effect. The effects of introducing antibiotics into the environment on the long-term resistance of microbial communities to metal(loid)s are largely unknown. Here, manure-fertilizers that contained either oxytetracycline (OTC) or sulfadiazine (SD) at four concentrations (0, 1, 10, and 100 mg kg-1) were incorporated into a maize cropping system in an area with a high arsenic geological background. The results showed that the introduction of exogenous antibiotics had a notable effect on the bacterial diversity of the maize rhizosphere soil, as evidenced by alterations in Chao1 and Shannon index values when compared to those of the control. Oxytetracycline exposure did not significantly alter the prevalence of most bacterial phyla, with the exception of Actinobacteria. However, sulfadiazine antibiotic exposure caused a decrease in prevalence as exposure concentrations increased, with the exception of Gemmatimonadetes. The same reaction pattern was observed in the five most prevalent genera, such as Gemmatimonas, Fulvimonas, Luteimonas, Massilia, and Streptomyces. It was observed that the abundance of tetC, tetG, and sul2 antibiotic resistance genes (ARGs) significantly increased in correlation with the concentration of antibiotic exposure, and a strong link was found between these genes and integrons (intl1). The abundance of microbial functional genes related to arsenic transformation (aioA and arsM) increased when there was an increase in oxytetracycline exposure concentrations, whereas a decrease in abundance was observed with increasing sulfadiazine exposure concentrations. Proteobacteria, Actinobacteriota, Acidobacteriota, Chloroflexi, Firmicutes, Bacteroidota, Gemmatimonadota, Cyanobacteria and Planctomycetes were found to be important indicators of the introduction of antibiotics, and may be essential in the development of antibiotic resistance in soils with high arsenic geological background. Planctomycetacia (from Planctomycetes) was significantly negatively correlated with sul2 and intl1 genes, which might play a role in the development of resistance profiles to exogenous antibiotics. This study will expand our understanding of microbial resistance to antibiotic contamination in areas with a high geological background, as well as reveal the hidden ecological effects of combined contamination.


Assuntos
Arsênio , Microbiota , Oxitetraciclina , Antibacterianos/farmacologia , Oxitetraciclina/farmacologia , Zea mays , Rizosfera , Genes Bacterianos , Sulfadiazina/farmacologia , Bactérias , Solo , Microbiologia do Solo , Esterco/microbiologia
13.
Sci Rep ; 13(1): 19276, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37935719

RESUMO

Both primary Sjögren's syndrome (pSS) and acute myocardial infarction (AMI) are intricately linked. However, their common mechanism is not fully understood. Herein, we examined the underlying network of molecular action associated with developing this complication. Datasets were downloaded from the GEO database. We performed enrichment and protein-protein interaction analyses and screened key genes. We used external datasets to confirm the diagnostic performance for these hub genes. Transcription factor and microRNA regulatory networks were constructed for the validated hub genes. Finally, drug prediction and molecular docking validation were performed. We identified 62 common DEGs, many of which were enriched regarding inflammation and immune response. 5 DEGs were found as key hub genes (IGSF6, MMP9, S100A8, MNDA, and NCF2). They had high diagnostic performance in external datasets. Functional enrichment of these five hub genes showed that they were associated with the adaptive immune response. The Type 1T helper cell showed the most association among all cell types related to AMI and pSS. We identified 36 common TFs and 49 identical TF-miRNAs. The drugs, including Benzo, dexamethasone, and NADP, were predicted as potential therapeutic agents. Herein, we revealed common networks involving pSS and AMI etiologies. Knowledge of these networks and hub genes can enhance research into their associated mechanism and the development of future robust therapy.


Assuntos
MicroRNAs , Infarto do Miocárdio , Síndrome de Sjogren , Humanos , Simulação de Acoplamento Molecular , Síndrome de Sjogren/complicações , Síndrome de Sjogren/genética , Calgranulina A , Biologia Computacional , MicroRNAs/genética , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Perfilação da Expressão Gênica
14.
Front Pharmacol ; 14: 1168144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138846

RESUMO

Background: Ursodeoxycholic acid (UDCA) is a natural drug essential for the treatment of cholestatic liver diseases. The food effects on the absorption of UDCA and the disposition of circulating bile salts remain unclear despite its widespread global uses. This study aims to investigate the effects of high-fat (HF) diets on the pharmacokinetics of UDCA and disclose how the circulated bile salts were simultaneously perturbed. Methods: After an overnight fast, a cohort of 36 healthy subjects received a single oral dose (500 mg) of UDCA capsules, and another cohort of 31 healthy subjects received the same dose after consuming a 900 kcal HF meal. Blood samples were collected from 48 h pre-dose up to 72 h post-dose for pharmacokinetic assessment and bile acid profiling analysis. Results: The HF diets significantly delayed the absorption of UDCA, with the Tmax of UDCA and its major metabolite, glycoursodeoxycholic acid (GUDCA), changing from 3.3 h and 8.0 h in the fasting study to 4.5 h and 10.0 h in the fed study, respectively. The HF diets did not alter the Cmax of UDCA and GUDCA but immediately led to a sharp increase in the plasma levels of endogenous bile salts including those hydrophobic ones. The AUC0-72h of UDCA significantly increased from 25.4 µg h/mL in the fasting study to 30.8 µg h/mL in the fed study, while the AUC0-72h of GUDCA showed no difference in both studies. As a result, the Cmax of total UDCA (the sum of UDCA, GUDCA, and TUDCA) showed a significant elevation, while the AUC0-72h of total UDCA showed a slight increase without significance in the fed study compared to the fasting study. Conclusion: The HF diets delay UDCA absorption due to the extension of gastric empty time. Although UDCA absorption was slightly enhanced by the HF diets, the beneficial effect may be limited in consideration of the simultaneous elevation of circulating hydrophobic bile salts.

15.
Environ Sci Pollut Res Int ; 29(13): 19033-19044, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34705202

RESUMO

Antibiotics are frequently applied in aquaculture to control infectious diseases and promote aquaculture production. The long-term application of antibiotics can lead to antibiotic resistance within an ecosystem. Herein, we assessed the ecological responses to two antibiotics (oxytetracycline (OTC) and sulfadiazine (SD)) at three concentrations (0 mg/kg (control), 10 mg/kg, and 1000 mg/kg) re-entering the aquaculture sediments of shrimp ponds with an approximately long-term drug application history (5, 15, and more than 30 years) for 2 and 4 months. For the newly reclaimed aquaculture ponds (approximately 5 years), the re-entered OTC significantly promoted urease activity (UA) and peroxidase activity (POA), while inhibited dehydrogenase activity (DHA) and fluorescein diacetate esterase activity (FDA). Meanwhile, the re-entered SD showed promotional effects on POA and DHA, and inhibitory effects on UA and FDA. For ponds with 15 years of aquaculture history, re-entered OTC promoted POA, inhibited FDA, and changed the influencing effects of UA and DHA with exposure time. The re-entered SD showed promotional effects on UA, POA and DHA, and inhibitory effects on FDA. For long-term aquaculture ponds (more than 30 years of aquaculture history), re-entered OTC promoted POA, DHA, and FDA, while it inhibited UA. Meanwhile, SD promoted all four enzyme activities. Pearson correlation analysis indicated that the variances of enzyme responses to the re-entry of antibiotics in the three sediment environments were related with the type, concentration, and exposure time of antibiotics, as well as the sediment properties and aquaculture history. The enzyme activities in the sediment environment from newly reclaimed aquaculture ponds were more sensitive to the re-entered antibiotics, while the enzyme activities displayed a clear tolerance in the sediment environment with more than 30 years of aquaculture history. However, in the sediment environment with 15 years of aquaculture history, the response of the enzyme activities to re-entered antibiotics demonstrated time processes of antibiotic adaptation during antibiotic resistance selection. This study has illustrated the effects of re-entered antibiotics on enzyme activities in the aquaculture environment with long-term antibiotic resistance/tolerance profiles, and further establishes the possible effects on ecosystem functioning in continuous antibiotic selection pressure.


Assuntos
Antibacterianos , Oxitetraciclina , Antibacterianos/análise , Antibacterianos/farmacologia , Aquicultura , Ecossistema , Lagoas/análise
16.
Artigo em Inglês | MEDLINE | ID: mdl-36294139

RESUMO

Metal(loid)s can promote the spread and enrichment of antibiotic resistance in the environmental ecosystem through a co-selection effect. Little is known about the ecological effects of entering antibiotics into the environment with long-term metal(loid)s' resistance profiles. Here, cow manure containing oxytetracycline (OTC) or sulfadiazine (SA) at four concentrations (0 (as control), 1, 10, and 100 mg/kg) was loaded to a maize cropping system in an area with high a arsenicals geological background. Results showed that exogenous antibiotics entering significantly changed the nutrient conditions, such as the concentration of nitrate nitrogen, ammonium nitrogen, and available phosphorus in the maize rhizosphere soil, while total arsenic and metals did not display any differences in antibiotic treatments compared with control. Antibiotics exposure significantly influenced nitrate and nitrite reductase activities to reflect the inhibition of denitrification rates but did not affect the soil urease and acid phosphatase activities. OTC treatment also did not change soil dehydrogenase activities, while SA treatment posed promotion effects, showing a tendency to increase with exposure concentration. Both the tested antibiotics (OTC and SA) decreased the concentration of arsenite and arsenate in rhizosphere soil, but the inhibition effects of the former were higher than that of the latter. Moreover, antibiotic treatment impacted arsenite and arsenate levels in maize root tissue, with positive effects on arsenite and negative effects on arsenate. As a result, both OTC and SA treatments significantly increased bioconcentration factors and showed a tendency to first increase and then decrease with increasing concentration. In addition, the treatments decreased translocation capacity of arsenic from roots to shoots and showed a tendency to increase translocation factors with increasing concentration. Microbial communities with arsenic-resistance profiles may also be resistant to antibiotics entering.


Assuntos
Compostos de Amônio , Arsênio , Arsenicais , Arsenitos , Oxitetraciclina , Rizosfera , Zea mays , Esterco , Antibacterianos/farmacologia , Oxitetraciclina/farmacologia , Arseniatos , Ecossistema , Nitratos , Urease , Solo , Sulfadiazina , Nitrogênio/análise , Fósforo , Fosfatase Ácida/farmacologia , Compostos de Amônio/farmacologia , Nitrito Redutases/farmacologia , Oxirredutases
17.
Dig Dis Sci ; 56(4): 1082-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20824499

RESUMO

BACKGROUND: Studies suggest that peroxisome proliferator-activated receptor γ(PPARγ) ligands may represent a therapeutic option in acute pancreatitis, yet most of them have been prophylactic administrated. AIMS: To evaluate the therapeutic effect of pioglitazone in rats with severe acute pancreatitis induced by sodium taurocholate. METHODS: Severe acute pancreatitis (SAP) was induced in male Sprague-Dawley rats by the retrograde injection of 5% sodium taurocholate into the pancreatic duct. After SAP was induced, pioglitazone was injected intraperitoneally and its role on the severity of inflammatory response and pancreatic injury was investigated. Amylase activity, inflammatory cytokines production, pathological changes of pancreas, PPARγ mRNA expression, and the survival rate were examined. RESULTS: Treatment with pioglitazone decreased the level of amylase activity, proinflammatory factors IL-6 and TNF-α, ameliorated pancreatic histological score, and upregulated the expression of PPARγ mRNA. The survival rate in the early stage of severe acute pancreatitis was also improved. CONCLUSIONS: Pioglitazone can be used as a therapeutic drug and relieve the damages caused by SAP, which suggests PPARγ ligand-pioglitazone offers a potent approach for the treatment of severe acute pancreatitis.


Assuntos
Hipoglicemiantes/uso terapêutico , Pancreatite Necrosante Aguda/tratamento farmacológico , Tiazolidinedionas/uso terapêutico , Amilases/biossíntese , Animais , Interleucina-6/biossíntese , Masculino , PPAR gama/agonistas , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pancreatite Necrosante Aguda/induzido quimicamente , Pancreatite Necrosante Aguda/mortalidade , Pancreatite Necrosante Aguda/patologia , Pioglitazona , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Ácido Taurocólico/efeitos adversos , Resultado do Tratamento , Fator de Necrose Tumoral alfa/biossíntese
18.
Environ Sci Pollut Res Int ; 28(48): 68475-68486, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34275078

RESUMO

Lijiang River is an essential drinking water source and natural scenery in the Guilin City. For the first time, implications of rainstorm were taken into consideration by investigating spatial and temporal variation of dissolved heavy metals (HMs) in the Lijiang River water. A total of 68 water samples were collected during low flow (normal) season and high flow (rainstorm) season from 34 sampling sites. Dissolved HMs including Cr, Mn, Co, Cu, Zn, As, Cd, Sb, and Pb were found to meet the respective drinking water standards, while comparatively higher concentration was observed after the rainstorm season, except for Cr. Multivariate statistical analysis showed that Co, Cu, Cr, Zn, Sb, and Pb in normal season were mainly controlled by anthropogenic sources. Furthermore, higher concentrations of Mn, Cu, Cd, Pb, Co, and Zn during the high flow season were attributed to rainstorm. The water quality index (WQI) showed good grades and comparatively lower in rainstorm season. The results of health risk assessment revealed that HMs in Lijiang River posed limited health risk; however, As posed potential health risk specially in rainstorm season. It is suggested to adopt preventive measures for mining activities and industrial waste-water discharge at the river's upstream and downstream.


Assuntos
Água Potável , Metais Pesados , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise , Qualidade da Água
19.
Sci Total Environ ; 677: 373-381, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31059880

RESUMO

Rapid industrialization and urbanization have accelerated the contamination of paddy soils with potentially toxic elements (PTEs). However, the status and the key factors responsible for the geographical variation in PTE concentrations in rice remain poorly understood. Here, a total of 113 pairs of soil and rice plant samples were collected from 19 provinces in four major rice producing areas of China to assess the geographical variation in total arsenic (As), cadmium (Cd) and lead (Pb) concentrations in the soil-rice system. Average total concentrations of As, Cd and Pb were 11.8, 0.45 and 25.7 mg kg-1, respectively, in the soils and 0.089, 0.087 and 0.036 mg kg-1 in the polished rice. The national maximum allowable concentrations of total soil As and Cd were exceeded in 6.19 and 33.6% of soils and that of Cd was exceeded in 7.96% of polished rice and no polished rice exceed the Pb limit. The As, Cd and Pb concentrations of rice were significantly and positively correlated (p < 0.05) with their corresponding soil available concentrations rather than with their soil total concentrations. Due to the combined effects of local rice varieties, cultivation of varieties with high Cd translocation factors and high Cd availability in acid soils, the highest rice Cd risk occurred in south China. The Cd concentrations in polished rice exceeded the maximum allowable by 4.0 and 15.8% in uncontaminated and contaminated soils, respectively. Results from 113 fixed samples may represent the actual current As, Cd and Pb status of rice in the main rice production areas nationally as they were very consistent with 574 random samples. In view of the high Cd contamination risk in acid soils of south China, countermeasures are needed to minimize Cd accumulation in rice crops in this region.

20.
Sci Total Environ ; 637-638: 1342-1350, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29801226

RESUMO

Estimating the bioavailability and predicting the uptake of metals to hyperaccumulators is very important in developing the field application of phytoextraction. A pot experiment was conducted using 108 agricultural soils covering a wide range of soil properties by the cadmium (Cd) hyperaccumulator Sedum plumbizincicola. The contributions of a range of soil properties to Cd uptake were quantified. Soil total, soluble, CaCl2-extractable and diffusive gradients in thin films (DGT)-extractable Cd concentrations (Cdtotal, Cdsoln, CdCaCl2 and CdDGT) were used to estimate Cd bioavailability and predict shoot Cd concentration (Cdshoot) using a piecewise function. Cdtotal and pH were the two major contributors to Cd uptake. Cdshoot showed a logarithmic increase with Cdtotal from 0.30 to 10.0 mg kg-1 but no further increase when Cd levels exceeded 10 mg kg-1. Soil pH had a discernible negative effect on Cd bioavailability from pH 5.5 to 7.5 but a weak influence at pH < 5.5 or pH > 7.5. This indicates that the optimum pH for phytoextraction with S. plumbizincicola was ~5.5 and lower pH produced little increase in shoot Cd uptake. DGT gave the best estimation of Cd bioavailability across all the data. When Cdtotal > 10 mg kg-1, none of the four measures was accurate enough to predict Cdshoot but when pH > 7.5 all the four measures were well correlated with Cdshoot. Piecewise equations in different ranges of Cdtotal or pH significantly improved the prediction of Cdshoot compared with the global equations derived from all the data. Compared with the piecewise equations, when pH > 7.5 Cdshoot was greatly overestimated with the global equation of Cdtotal. Our study provides useful information on the soils in which phytoextraction with S. plumbizincicola is feasible in the field. CAPSULE: Cd availability to S. plumbizincicola was estimated by a piecewise function in soils with wide ranges of total Cd concentration and pH.


Assuntos
Cádmio/análise , Sedum/metabolismo , Poluentes do Solo/análise , Agricultura , Biodegradação Ambiental , Cádmio/metabolismo , Monitoramento Ambiental , Sedum/química , Solo/química , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA