Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 20(10): e3001440, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36301995

RESUMO

The cerebral cortex is organized in cortical layers that differ in their cellular density, composition, and wiring. Cortical laminar architecture is also readily revealed by staining for cytochrome oxidase-the last enzyme in the respiratory electron transport chain located in the inner mitochondrial membrane. It has been hypothesized that a high-density band of cytochrome oxidase in cortical layer IV reflects higher oxygen consumption under baseline (unstimulated) conditions. Here, we tested the above hypothesis using direct measurements of the partial pressure of O2 (pO2) in cortical tissue by means of 2-photon phosphorescence lifetime microscopy (2PLM). We revisited our previously developed method for extraction of the cerebral metabolic rate of O2 (CMRO2) based on 2-photon pO2 measurements around diving arterioles and applied this method to estimate baseline CMRO2 in awake mice across cortical layers. To our surprise, our results revealed a decrease in baseline CMRO2 from layer I to layer IV. This decrease of CMRO2 with cortical depth was paralleled by an increase in tissue oxygenation. Higher baseline oxygenation and cytochrome density in layer IV may serve as an O2 reserve during surges of neuronal activity or certain metabolically active brain states rather than reflecting baseline energy needs. Our study provides to our knowledge the first quantification of microscopically resolved CMRO2 across cortical layers as a step towards better understanding of brain energy metabolism.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Consumo de Oxigênio , Animais , Camundongos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Córtex Cerebral/metabolismo , Encéfalo/fisiologia , Circulação Cerebrovascular
2.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37986755

RESUMO

SIGNIFICANCE: Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale (mesoscopic) imaging of neuronal activity with fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts. AIM: Develop a system for mesoscopic imaging of two fluorescent and two reflectance channels. APPROACH: Excitation of red and green fluorescence is achieved through epi-illumination. Hemoglobin absorption imaging is achieved using 525- and 625nm LEDs positioned around the objective lens. An aluminum hemisphere placed between objective and cranial window provides diffuse illumination of the brain. Signals are recorded sequentially by a single sCMOS detector. RESULTS: We demonstrate performance of our imaging system by recording large-scale spontaneous and stimulus-evoked neuronal, cholinergic, and hemodynamic activity in awake head-fixed mice with a curved crystal skull window expressing the red calcium indicator jRGECO1a and the green acetylcholine sensor GRABACh3.0 . Shielding of illumination light through the aluminum hemisphere enables concurrent recording of pupil diameter changes. CONCLUSIONS: Our widefield microscope design with single camera can be used to acquire multiple aspects of brain physiology and is compatible with behavioral readouts of pupil diameter.

3.
Neurophotonics ; 11(3): 034310, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38881627

RESUMO

Significance: Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale ("mesoscopic") imaging of different aspects of neuronal activity with spectrally compatible fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts. Aim: We aim to develop a system for mesoscopic imaging of two fluorescent and two reflectance channels. Approach: Excitation of red and green fluorescence is achieved through epi-illumination. Hemoglobin absorption imaging is achieved using 525- and 625-nm light-emitting diodes positioned around the objective lens. An aluminum hemisphere placed between objective and cranial window provides diffuse illumination of the brain. Signals are recorded sequentially by a single sCMOS detector. Results: We demonstrate the performance of our imaging system by recording large-scale spontaneous and stimulus-evoked neuronal, cholinergic, and hemodynamic activity in awake, head-fixed mice with a curved "crystal skull" window expressing the red calcium indicator jRGECO1a and the green acetylcholine sensor GRAB ACh 3.0 . Shielding of illumination light through the aluminum hemisphere enables concurrent recording of pupil diameter changes. Conclusions: Our widefield microscope design with a single camera can be used to acquire multiple aspects of brain physiology and is compatible with behavioral readouts of pupil diameter.

4.
Microvasc Res ; 87: 83-91, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23428342

RESUMO

The existence of a hydrodynamically relevant endothelial glycocalyx has been established in capillaries, venules, and arterioles in vivo. The glycocalyx is thought to consist primarily of membrane-bound proteoglycans with glycosaminoglycan side-chains, membrane-bound glypicans, and adsorbed plasma proteins. The proteoglycans found on the luminal surface of endothelial cells are syndecans-1, -2, and -4, and glypican-1. The extent to which any of these proteins might serve to anchor the glycocalyx to the endothelium has not yet been determined. To test whether syndecan-1, in particular, is an essential anchoring protein, we performed experiments to determine the hydrodynamically relevant glycocalyx thickness in syndecan-1 deficient (Sdc1(-/-)) mice. Micro-particle image velocimetry data were collected using a previously described method. Microviscometric analysis of these data consistently revealed the existence of a hydrodynamically relevant endothelial glycocalyx in Sdc1(-/-) mice in vivo. The mean glycocalyx thickness found in Sdc1(-/-) mice was 0.45±0.10 µm (N=15), as compared with 0.54±0.12 µm (N=11) in wild-type (WT) mice (p=0.03). The slightly thinner glycocalyx observed in Sdc1(-/-) mice relative to WT mice may be due to the absence of syndecan-1. These findings show that healthy Sdc1(-/-) mice are able to synthesize and maintain a hydrodynamically relevant glycocalyx, which indicates that syndecan-1 is not an essential anchoring protein for the glycocalyx in Sdc1(-/-) mice. This may also be the case for WT mice; however, Sdc1(-/-) mice might adapt to the lack of syndecan-1 by increasing the expression of other proteoglycans. In any case, syndecan-1 does not appear to be a prerequisite for the existence of an endothelial glycocalyx.


Assuntos
Células Endoteliais/metabolismo , Glicocálix/metabolismo , Sindecana-1/deficiência , Vênulas/metabolismo , Animais , Velocidade do Fluxo Sanguíneo , Adesão Celular , Hidrodinâmica , Análise dos Mínimos Quadrados , Leucócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Microscopia de Vídeo , Dinâmica não Linear , Fluxo Sanguíneo Regional , Sindecana-1/genética , Vênulas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA