Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 629(8013): 919-926, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589574

RESUMO

RAS oncogenes (collectively NRAS, HRAS and especially KRAS) are among the most frequently mutated genes in cancer, with common driver mutations occurring at codons 12, 13 and 611. Small molecule inhibitors of the KRAS(G12C) oncoprotein have demonstrated clinical efficacy in patients with multiple cancer types and have led to regulatory approvals for the treatment of non-small cell lung cancer2,3. Nevertheless, KRASG12C mutations account for only around 15% of KRAS-mutated cancers4,5, and there are no approved KRAS inhibitors for the majority of patients with tumours containing other common KRAS mutations. Here we describe RMC-7977, a reversible, tri-complex RAS inhibitor with broad-spectrum activity for the active state of both mutant and wild-type KRAS, NRAS and HRAS variants (a RAS(ON) multi-selective inhibitor). Preclinically, RMC-7977 demonstrated potent activity against RAS-addicted tumours carrying various RAS genotypes, particularly against cancer models with KRAS codon 12 mutations (KRASG12X). Treatment with RMC-7977 led to tumour regression and was well tolerated in diverse RAS-addicted preclinical cancer models. Additionally, RMC-7977 inhibited the growth of KRASG12C cancer models that are resistant to KRAS(G12C) inhibitors owing to restoration of RAS pathway signalling. Thus, RAS(ON) multi-selective inhibitors can target multiple oncogenic and wild-type RAS isoforms and have the potential to treat a wide range of RAS-addicted cancers with high unmet clinical need. A related RAS(ON) multi-selective inhibitor, RMC-6236, is currently under clinical evaluation in patients with KRAS-mutant solid tumours (ClinicalTrials.gov identifier: NCT05379985).


Assuntos
Antineoplásicos , Mutação , Neoplasias , Proteína Oncogênica p21(ras) , Proteínas Proto-Oncogênicas p21(ras) , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Guanosina Trifosfato/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Proteína Oncogênica p21(ras)/antagonistas & inibidores , Proteína Oncogênica p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nature ; 629(8013): 927-936, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588697

RESUMO

Broad-spectrum RAS inhibition has the potential to benefit roughly a quarter of human patients with cancer whose tumours are driven by RAS mutations1,2. RMC-7977 is a highly selective inhibitor of the active GTP-bound forms of KRAS, HRAS and NRAS, with affinity for both mutant and wild-type variants3. More than 90% of cases of human pancreatic ductal adenocarcinoma (PDAC) are driven by activating mutations in KRAS4. Here we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models. We observed broad and pronounced anti-tumour activity across models following direct RAS inhibition at exposures that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumour versus normal tissues. Treated tumours exhibited waves of apoptosis along with sustained proliferative arrest, whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. In the autochthonous KPC mouse model, RMC-7977 treatment resulted in a profound extension of survival followed by on-treatment relapse. Analysis of relapsed tumours identified Myc copy number gain as a prevalent candidate resistance mechanism, which could be overcome by combinatorial TEAD inhibition in vitro. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS-GTP inhibition in the setting of PDAC and identify a promising candidate combination therapeutic regimen to overcome monotherapy resistance.


Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Guanosina Trifosfato , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Variações do Número de Cópias de DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Genes myc , Guanosina Trifosfato/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , Mutação
3.
J Infect Dis ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38330453

RESUMO

Urinary tract infections are primarily caused by uropathogenic Escherichia coli (UPEC). UPEC infects bladder epithelial cells (BECs) via fusiform vesicles and escapes into the cytosol by disrupting fusiform vesicle membrane using outer membrane phospholipase PldA, and establishes biofilm-like intracellular bacterial communities (IBCs) for protection from host immune clearance. Cytosolic UPEC is captured by autophagy to form autophagosomes, then transport to lysosomes, triggering the spontaneous exocytosis of lysosomes. The mechanism by which UPEC evades autophagy to recognize and form IBCs remains unclear. Here, we demonstrate that by inhibiting autophagic flux, UPEC PldA reduces the lysosome exocytosis of BECs. By reducing intracellular PI3P levels, UPEC PldA increases the accumulation of NDP52 granules and decreases the targeting of NDP52 to autophagy, hence stalling pre-autophagosome structures. Thus, our results uncover a critical role for PldA to inhibit autophagic flux, favoring UPEC escapes from lysosome exocytosis, thereby contributing to acute UTI.

4.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473948

RESUMO

Anthracnose caused by Colletotrichum gloeosporioides is a destructive disease of Stylosanthes (stylo). Combination treatment of phloretin and pterostilbene (PP) has been previously shown to effectively inhibit the conidial germination and mycelial growth of C. gloeosporioides in vitro. In this study, the effects of PP treatment on the growth of C. gloeosporioides in vivo and the biocontrol mechanisms were investigated. We found that exogenous PP treatment could limit the growth of C. gloeosporioides and alleviate the damage of anthracnose in stylo. Comparative transcriptome analysis revealed that 565 genes were up-regulated and 239 genes were down-regulated upon PP treatment during the infection by C. gloeosporioides. The differentially expressed genes were mainly related to oxidative stress and chloroplast organization. Further physiological analysis revealed that application of PP after C. gloeosporioides inoculation significantly reduced the accumulation of O2•- level and increased the accumulation of antioxidants (glutathione, ascorbic acid and flavonoids) as well as the enzyme activity of total antioxidant capacity, superoxide dismutase, catalase, glutathione reductase, peroxidase and ascorbate peroxidase. PP also reduced the decline of chlorophyll a + b and increased the content of carotenoid in response to C. gloeosporioides infection. These results suggest that PP treatment alleviates anthracnose by improving antioxidant capacity and reducing the damage of chloroplasts, providing insights into the biocontrol mechanisms of PP on the stylo against anthracnose.


Assuntos
Colletotrichum , Fabaceae , Antioxidantes/farmacologia , Floretina/farmacologia , Clorofila A , Perfilação da Expressão Gênica , Transcriptoma , Fabaceae/genética , Colletotrichum/genética , Doenças das Plantas
5.
J Clin Anesth ; 94: 111397, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38278058

RESUMO

BACKGROUND: The determination of optimal positive end-expiratory pressure (PEEP) values in patients undergoing general anesthesia remains controversial. Electrical impedance tomography (EIT) directed individualized PEEP has emerged as a novel approach to PEEP setting and has garnered increasing attention. This meta-analysis aims to systematically assess the effect of EIT-guided PEEP setting compared to traditional fixed PEEP values or other PEEP titration strategies in patients undergoing general anesthesia. METHODS: A comprehensive search of electronic databases, including PubMed, Web of Science, EMBASE, and the Cochrane Library, was conducted from inception to January 2023, with no language restrictions. The search terms used were "EIT"and "PEEP" with their corresponding free words. Two researchers independently conducted literature screening, data extraction, and quality evaluation. The primary outcomes of interest were oxygenation index (OI), lung compliance, and number of postoperative pulmonary complications (PPCs). The secondary outcomes included mean arterial blood pressure (MAP) and number of vasoactive drug injections. RevMan 5.3 software was used to analyze the data and draw the forest plot, and Stata 14.2 software was used to conduct sensitivity analysis to assess the stability of the results. RESULTS: 5 studies involving 272 participants were included in this meta-analysis. Our findings suggest that EIT-guided individualized PEEP setting is superior to traditional fixed PEEP values and other individualized PEEP titration methods in terms of intraoperative OI(OR = 95.73, 95%CI: (49.10, 142.37); P < 0.0001) and lung compliance(OR = 7.69, 95%CI: (5.55, 9.83); P < 0.00001), without affecting intraoperative hemodynamic parameters such as MAP(OR = 2.07, 95%CI: (-1.00, 5.13); P = 0.19) and the number of intravenous vasoactive drugs(OR = 1.22, 95%CI: (0.68, 2.21); P = 0.51) or increasing the incidence of postoperative PPCs(OR = 0.87, 95%CI: (0.41, 1.82); P = 0.71). CONCLUSIONS: Our meta-analysis suggests potential benefits of EIT-guided individualized PEEP setting in improving intraoperative oxygenation and lung compliance in patients undergoing general anesthesia. However, further research is needed to establish conclusive evidence, and caution should be exercised in interpreting these findings as the current literature remains inconclusive regarding the impact on intraoperative hemodynamics and postoperative complications.


Assuntos
Respiração com Pressão Positiva , Tomografia , Humanos , Anestesia Geral , Impedância Elétrica , Pulmão , Respiração com Pressão Positiva/métodos , Complicações Pós-Operatórias/prevenção & controle , Tomografia/métodos
6.
J Agric Food Chem ; 72(7): 3633-3643, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38330270

RESUMO

Chlorogenic acid (CGA) has incredible potential for various pharmaceutical, nutraceutical, and agricultural applications. However, the traditional extraction approach from plants is time-consuming, further limiting its production. Herein, we design and construct the de novo biosynthesis pathway of CGA using modular coculture engineering in Escherichia coli, which is composed of MG09 and BD07 strains. To accomplish this, the phenylalanine-deficient MG09 strain was engineered to utilize xylose preferentially and to overproduce precursor caffeic acid, while the tyrosine-deficient BD07 strain was constructed to consume glucose exclusively to enhance another precursor quinic acid availability for the biosynthesis of CGA. Further pathway modularization and balancing in the context of syntrophic cocultures resulted in additional production improvement. The coculture strategy avoids metabolic flux competition in the biosynthesis of two CGA precursors, caffeic acid and quinic acid, and allows for production improvement by balancing module proportions. Finally, the optimized coculture based on the aforementioned efforts produced 131.31 ± 7.89 mg/L CGA. Overall, the modular coculture engineering strategy in this study provides a reference for constructing microbial cell factories that can efficiently biomanufacture complex natural products.


Assuntos
Ácidos Cafeicos , Ácido Clorogênico , Glucose , Glucose/metabolismo , Ácido Clorogênico/metabolismo , Xilose/metabolismo , Ácido Quínico , Engenharia Metabólica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo
7.
Cancer Discov ; 14(6): 994-1017, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38593348

RESUMO

RAS-driven cancers comprise up to 30% of human cancers. RMC-6236 is a RAS(ON) multi-selective noncovalent inhibitor of the active, GTP-bound state of both mutant and wild-type variants of canonical RAS isoforms with broad therapeutic potential for the aforementioned unmet medical need. RMC-6236 exhibited potent anticancer activity across RAS-addicted cell lines, particularly those harboring mutations at codon 12 of KRAS. Notably, oral administration of RMC-6236 was tolerated in vivo and drove profound tumor regressions across multiple tumor types in a mouse clinical trial with KRASG12X xenograft models. Translational PK/efficacy and PK/PD modeling predicted that daily doses of 100 mg and 300 mg would achieve tumor control and objective responses, respectively, in patients with RAS-driven tumors. Consistent with this, we describe here objective responses in two patients (at 300 mg daily) with advanced KRASG12X lung and pancreatic adenocarcinoma, respectively, demonstrating the initial activity of RMC-6236 in an ongoing phase I/Ib clinical trial (NCT05379985). SIGNIFICANCE: The discovery of RMC-6236 enables the first-ever therapeutic evaluation of targeted and concurrent inhibition of canonical mutant and wild-type RAS-GTP in RAS-driven cancers. We demonstrate that broad-spectrum RAS-GTP inhibition is tolerable at exposures that induce profound tumor regressions in preclinical models of, and in patients with, such tumors. This article is featured in Selected Articles from This Issue, p. 897.


Assuntos
Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas p21(ras)/genética , Feminino , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Guanosina Trifosfato/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Masculino
8.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38105998

RESUMO

Broad-spectrum RAS inhibition holds the potential to benefit roughly a quarter of human cancer patients whose tumors are driven by RAS mutations. However, the impact of inhibiting RAS functions in normal tissues is not known. RMC-7977 is a highly selective inhibitor of the active (GTP-bound) forms of KRAS, HRAS, and NRAS, with affinity for both mutant and wild type (WT) variants. As >90% of human pancreatic ductal adenocarcinoma (PDAC) cases are driven by activating mutations in KRAS, we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models, including human and murine cell lines, human patient-derived organoids, human PDAC explants, subcutaneous and orthotopic cell-line or patient derived xenografts, syngeneic allografts, and genetically engineered mouse models. We observed broad and pronounced anti-tumor activity across these models following direct RAS inhibition at doses and concentrations that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumor versus normal tissues. Treated tumors exhibited waves of apoptosis along with sustained proliferative arrest whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS inhibition in the setting of PDAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA