Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(25): 37848-37861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38795294

RESUMO

Arsenic (As) is one extremely hazardous and carcinogenic metalloid element. Due to mining, metal smelting, and other human activities, the pollution of water (especially groundwater) and soil caused by As is increasingly serious, which badly threatens the environment and human health. In this study, a zeolite imidazolate framework (ZIF-8) was synthesized at room temperature and employed as an adsorbent to facilitate the adsorption of As(III) and As(V) from the solution. The successful synthesis of ZIF-8 was demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) revealed that its particle size was approximately 80 nm. The adsorption kinetics, adsorption isotherm, solution pH, dose, coexisting ions, and the synonymous elements antimony (Sb) were conducted to study the adsorption of As by ZIF-8 nanoparticles. The maximum saturation adsorption capacity was determined to be 101.47 mg/g and 81.40 mg/g for As(III), and As(V) at initial pH = 7.0, respectively. Apparently, ZIF-8 had a good removal effect on As, and it still maintained a good performance after four cycles. The coexisting ions PO43- and CO32- inhibited the adsorption of both As(III) and As(V). ZIF-8 performed well in removing both As and Sb simultaneously, although the presence of Sb hindered the adsorption of both As(III) and As(V). Both FTIR and XPS indicated the adsorption mechanism of As on ZIF-8: ZIF-8 generates a large amount of Zn-OH on the surface through hydrolysis and partial fracture of Zn-N, both of which form surface complexes with As.


Assuntos
Arsênio , Poluentes Químicos da Água , Zeolitas , Adsorção , Zeolitas/química , Arsênio/química , Poluentes Químicos da Água/química , Imidazóis/química , Cinética , Purificação da Água/métodos , Difração de Raios X , Concentração de Íons de Hidrogênio
2.
Environ Sci Pollut Res Int ; 30(34): 82866-82877, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37332032

RESUMO

High concentrations of arsenic and antimony contamination in soil are a potential risk to the ecological environment and human health. Soil washing can effectively and permanently reduce the soil contamination. This study used Aspergillus niger fermentation broth as a washing agent to remove As and Sb from contaminated soil. Characterization of organic acids in the fermentation broth by high-performance liquid chromatographic (HPLC) and chemically simulated leaching experiments revealed that oxalic acid played a significant role in removing As and Sb from the soil. The effect of washing conditions on the metal removal rate of Aspergillus niger fermentation broth was investigated by batch experiments, and the optimal conditions were determined: no dilution, pH 1, L/S ratio 15:1, and leaching at 25 °C for 3 h. The soils were washed three times under optimal conditions, with 73.78%, 80.84%, and 85.83% removal of arsenic and 65.11%, 76.39%, and 82.06% removal of antimony, respectively. The results of metal speciation distribution in the soil showed that the fermentation broth could effectively remove As and Sb on amorphous Fe/Al hydrous oxides in soil. The analysis of X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) of soils before and after washing showed that the washing of Aspergillus niger fermentation broth had a minor effect on the structural changes of soils. After washing, soil organic matter and soil enzyme activity were increased. Thus, Aspergillus niger fermentation broth shows excellent potential as a washing agent for removing As and Sb from soils.


Assuntos
Arsênio , Poluentes do Solo , Humanos , Arsênio/análise , Antimônio/análise , Aspergillus niger , Fermentação , Solo/química , Poluentes do Solo/análise
3.
Front Plant Sci ; 13: 916287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237496

RESUMO

Salinity severely inhibits growth and reduces yield of salt-sensitive plants like wheat, and this effect can be alleviated by plant growth regulators and phytohormones, among which abscisic acid (ABA) plays a central role in response to various stressful environments. ABA is highly photosensitive to light disruption, which this limits its application. Here, based on pyrabactin (a synthetic ABA agonist), we designed and synthesized a functional analog of ABA and named B2, then evaluated its role in salt resistance using winter wheat seedlings. The phenotypes showed that B2 significantly improved the salt tolerance of winter wheat seedlings by elevating the biomass. The physiological analysis found that B2 treatment reduced the generation rate of O2 -, electrolyte leakage, the content of proline, and the accumulation of malonaldehyde (MDA) and H2O2 and also significantly increased the contents of endogenous hormones zeatin riboside (ZA) and gibberellic acid (GA). Further biochemical analysis revealed that the activities of various antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), were enhanced by B2, and the activities of antioxidase isozymes SOD3, POD1/2, and APX1/2 were particularly increased, largely resembling ABA treatment. The abiotic stress response-related gene TaSOS1 was significantly upregulated by B2, while the TaTIP2;2 gene was suppressed. In conclusion, an ABA analog B2 was capable to enhance salt stress tolerance in winter wheat seedlings by stimulating the antioxidant system, providing a novel regulator for better survival of crops in saline soils and improving crop yield.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA