Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(36): 16131-16141, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39190601

RESUMO

Liquid crystal monomers (LCMs) are emerging organic pollutants due to their potential persistence, toxicity, and bioaccumulation. This study first characterized the levels and compositions of 19 LCMs in organisms in the Pearl River Estuary (PRE), estimated their bioaccumulation and trophic transfer potential, and identified priority contaminants. LCMs were generally accumulated in organisms from sediment, and the LCM concentrations in all organisms ranged from 32.35 to 1367 ng/g lipid weight. The main LCMs in organisms were biphenyls and analogues (BAs) (76.6%), followed by cyanobiphenyls and analogues (CBAs) (15.1%), and the least were fluorinated biphenyls and analogues (FBAs) (11.2%). The most abundant LCM monomers of BAs, FBAs, and CBAs in LCMs in organisms were 1-(4-propylcyclohexyl)-4-vinylcyclohexane (15.1%), 1-ethoxy-2,3-difluoro-4-(4-(4-propylcyclohexyl) cyclohexyl) benzene (EDPBB, 10.1%), and 4'-propoxy-4-biphenylcarbonitrile (5.1%), respectively. The niche studies indicated that the PRE food web was composed of terrestrial-based diet and marine food chains. Most LCMs exhibited biodilution in the terrestrial-based diet and marine food chains, except for EDPBB and 4,4'-bis(4-propylcyclohexyl) biphenyl (BPCHB). The hydrophobicity, position of fluorine substitution of LCMs, and biological habits may be important factors affecting the bioaccumulation and trophic transfer of LCMs. BPCHB, 1-(prop-1-enyl)-4-(4-propylcyclohexyl) cyclohexane, and EDPBB were characterized as priority contaminants. This study first reports the trophic transfer processes and mechanisms of LCMs and the biomonitoring in PRE.


Assuntos
Monitoramento Ambiental , Estuários , Rios , Poluentes Químicos da Água , Rios/química , Cadeia Alimentar , Cristais Líquidos , Animais
2.
Environ Sci Technol ; 57(43): 16585-16594, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37842981

RESUMO

A trophic position (TP) model (TPmix model) that simultaneously considered trophic discrimination factor and ßGlu/Phe variations was developed in this study and was first applied to investigate the trophic transfer of halogenated organic pollutants (HOPs) in wetland food webs. The TPmix model characterized the structure of the wetland food web more accurately and significantly improved the reliability of TMF compared to the TPbulk, TPAAs, and TPsimmr models, which were calculated based on the methods of stable nitrogen isotope analysis of bulk, traditional AAs-N-CSIA, and weighted ßGlu/Phe, respectively. Food source analysis revealed three interlocking food webs (kingfisher, crab, and frogs) in this wetland. The highest HOP biomagnification capacities (TMFmix) were found in the kingfisher food web (0.24-82.0), followed by the frog (0.08-34.0) and crab (0.56-11.7) food webs. The parabolic trends of TMFmix across combinations of log KOW in the frog food web were distinct from those of aquatic food webs (kingfisher and crab), which may be related to differences in food web composition and HOP bioaccumulation behaviors between aquatic and terrestrial organisms. This study provides a new tool to accurately study the trophic transfer of contaminants in wetlands and terrestrial food webs with diverse species and complex feeding relationships.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Cadeia Alimentar , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/metabolismo , Áreas Alagadas , Aminoácidos/metabolismo , Reprodutibilidade dos Testes , Peixes/metabolismo , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA