Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
ACS Omega ; 9(19): 21006-21015, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764691

RESUMO

The Li+/H+ cation exchange reactions occur when the cathode is exposed to water and can cause the degradation of battery performance, posing a significant challenge in the preparation of cathode aqueous electrodes. In this study, kh570 [3-(trimethoxysilyl)propyl methacrylate] is used to coat and modify the surface of LiNi0.5Co0.2Mn0.3O2 cathode particles. During the coating process, kh570 undergoes hydrolysis to generate silanol groups, which are subsequently bonded onto the surface of cathode particles and undergo self-polymerization through condensation reactions. As a result, a coating layer forms on the surface of the cathode. This change alters the surface properties of the cathode particles from hydrophilic to hydrophobic, thereby increasing their resistance to water. The coating layers reduce direct contact with water and minimizes internal particle microcracks formation in aqueous electrode processing. After the preparation of aqueous electrodes, the modified cathode exhibits lower transfer resistance and lower polarization, improving both the current rate performance and the cycling performance of the battery.

2.
Chem Commun (Camb) ; 60(23): 3158-3161, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38407404

RESUMO

Herein, we achieved reactive oxygen species manipulation using transition metal spinel ferrites (NixCo1-xFe2O4, x = 0, 0.5, 1) as Fenton-like agents. Specifically, NiFe2O4 mainly produced 1O2 and high-valence metals, while CoFe2O4 mainly produced ˙OH, from H2O2 activation. With bisphenol A as a model pollutant, the NiFe2O4/H2O2 system exhibited good resistance to ion interference.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA