Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 627(8004): 594-603, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383780

RESUMO

Although KDM5C is one of the most frequently mutated genes in X-linked intellectual disability1, the exact mechanisms that lead to cognitive impairment remain unknown. Here we use human patient-derived induced pluripotent stem cells and Kdm5c knockout mice to conduct cellular, transcriptomic, chromatin and behavioural studies. KDM5C is identified as a safeguard to ensure that neurodevelopment occurs at an appropriate timescale, the disruption of which leads to intellectual disability. Specifically, there is a developmental window during which KDM5C directly controls WNT output to regulate the timely transition of primary to intermediate progenitor cells and consequently neurogenesis. Treatment with WNT signalling modulators at specific times reveal that only a transient alteration of the canonical WNT signalling pathway is sufficient to rescue the transcriptomic and chromatin landscapes in patient-derived cells and to induce these changes in wild-type cells. Notably, WNT inhibition during this developmental period also rescues behavioural changes of Kdm5c knockout mice. Conversely, a single injection of WNT3A into the brains of wild-type embryonic mice cause anxiety and memory alterations. Our work identifies KDM5C as a crucial sentinel for neurodevelopment and sheds new light on KDM5C mutation-associated intellectual disability. The results also increase our general understanding of memory and anxiety formation, with the identification of WNT functioning in a transient nature to affect long-lasting cognitive function.


Assuntos
Cognição , Embrião de Mamíferos , Desenvolvimento Embrionário , Histona Desmetilases , Via de Sinalização Wnt , Animais , Humanos , Camundongos , Ansiedade , Cromatina/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/genética , Memória , Camundongos Knockout , Mutação , Neurogênese/genética , Via de Sinalização Wnt/efeitos dos fármacos
2.
Cell ; 148(4): 792-802, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22341449

RESUMO

Almost all eukaryotic genes are conserved, suggesting that they have essential functions. However, only a minority of genes have detectable loss-of-function phenotypes in experimental assays, and multiple theories have been proposed to explain this discrepancy. Here, we use RNA-mediated interference in C. elegans to examine how knockdown of any gene affects the overall fitness of worm populations. Whereas previous studies typically assess phenotypes that are detectable by eye after a single generation, we monitored growth quantitatively over several generations. In contrast to previous estimates, we find that, in these multigeneration population assays, the majority of genes affect fitness, and this suggests that genetic networks are not robust to mutation. Our results demonstrate that, in a single environmental condition, most animal genes play essential roles. This is a higher proportion than for yeast genes, and we suggest that the source of negative selection is different in animals and in unicellular eukaryotes.


Assuntos
Caenorhabditis elegans/genética , Redes Reguladoras de Genes , Aptidão Genética , Animais , Escherichia coli/genética , Fenótipo , Interferência de RNA
3.
RNA ; 25(3): 352-363, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30538148

RESUMO

The accurate inheritance of genetic material is a basic necessity in all domains of life and an unexpectedly large number of RNA processing factors are required for mitotic progression and genome stability. NRDE2 (nuclear RNAi defective-2) is an evolutionarily conserved protein originally discovered for its role in nuclear RNA interference (RNAi) and heritable gene silencing in Caenorhabditis elegans (C. elegans). The function of the human NRDE2 gene remains poorly understood. Here we show that human NRDE2 is an essential protein required for suppressing intron retention in a subset of pre-mRNAs containing short, GC-rich introns with relatively weak 5' and 3' splice sites. NRDE2 preferentially interacts with components of the U5 small nuclear ribonucleoprotein (snRNP), the exon junction complex, and the RNA exosome. Interestingly, NRDE2-depleted cells exhibit greatly increased levels of genomic instability and DNA damage, as well as defects in centrosome maturation and mitotic progression. We identify the essential centriolar satellite protein, CEP131, as a direct NRDE2-regulated target. NRDE2 specifically binds to and promotes the efficient splicing of CEP131 pre-mRNA, and depleting NRDE2 dramatically reduces CEP131 protein expression, contributing to impaired recruitment of critical centrosomal proteins (e.g., γ-tubulin and Aurora Kinase A) to the spindle poles during mitosis. Our work establishes a conserved role for human NRDE2 in RNA splicing, characterizes the severe genomic instability phenotypes observed upon loss of NRDE2, and highlights the direct regulation of CEP131 splicing as one of multiple mechanisms through which such phenotypes might be explained.


Assuntos
Fatores de Processamento de RNA/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Íntrons , Interferência de RNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Interferente Pequeno/genética
4.
Circ Res ; 111(11): 1395-7, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23139285

RESUMO

Since their discovery not long ago, microRNAs (miRNAs) have been extensively studied in hundreds of laboratories around the world. Initially thought of as merely cytoplasmic repressors of mRNA expression, it has since become more apparent that they also play regulatory roles in the nucleus. A recent study published in Nature introduces novel concepts in both miRNA regulation and function by showing that the let-7 miRNA regulates its own expression.

5.
J Innate Immun ; 15(1): 765-781, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37797588

RESUMO

Novel therapeutics are urgently needed to prevent opportunistic infections in immunocompromised individuals undergoing cancer treatments or other immune-suppressive therapies. Trained immunity is a promising strategy to reduce this burden of disease. We previously demonstrated that mesenchymal stromal cells (MSCs) preconditioned with a class A CpG oligodeoxynucleotide (CpG-ODN), a Toll-like receptor 9 (TLR9) agonist, can augment emergency granulopoiesis in a murine model of neutropenic sepsis. Here, we used a chimeric mouse model to demonstrate that MSCs secrete paracrine factors that act on lineage-negative c-kit+ hematopoietic stem cells (HSCs), leaving them "poised" to enhance emergency granulopoiesis months after transplantation. Chimeric mice developed from HSCs exposed to conditioned media from MSCs and CpG-ODN-preconditioned MSCs showed significantly higher bacterial clearance and increased neutrophil granulopoiesis following lung infection than control mice. By Cleavage Under Targets and Release Using Nuclease (CUT&RUN) chromatin sequencing, we identified that MSC-conditioned media leaves H3K4me3 histone marks in HSCs at genes involved in myelopoiesis and in signaling persistence by the mTOR pathway. Both soluble factors and extracellular vesicles from MSCs mediated these effects on HSCs and proteomic analysis by mass spectrometry revealed soluble calreticulin as a potential mediator. In summary, this study demonstrates that trained immunity can be mediated by paracrine factors from MSCs to induce neutrophil-trained immunity by reprogramming HSCs for long-lasting functional changes in neutrophil-mediated antimicrobial immunity.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos , Animais , Neutrófilos , Meios de Cultivo Condicionados/metabolismo , Proteômica , Imunidade Treinada , Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais/metabolismo
6.
Leukemia ; 33(1): 132-147, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29946193

RESUMO

Cancer cells subvert host immune surveillance by altering immune checkpoint (IC) proteins. Some Epstein-Barr virus (EBV)-associated tumors have higher Programmed Cell Death Ligand, PD-L1 expression. However, it is not known how EBV alters ICs in the context of its preferred host, the B lymphocyte and in derived lymphomas. Here, we found that latency III-expressing Burkitt lymphoma (BL), diffuse large B-cell lymphomas (DLBCL) or their EBNA2-transfected derivatives express high PD-L1. In a DLBCL model, EBNA2 but not LMP1 is sufficient to induce PD-L1. Latency III-expressing DLBCL biopsies showed high levels of PD-L1. The PD-L1 targeting oncosuppressor microRNA miR-34a was downregulated in EBNA2-transfected lymphoma cells. We identified early B-cell factor 1 (EBF1) as a repressor of miR-34a transcription. Short hairpin RNA (shRNA)-mediated knockdown of EBF1 was sufficient to induce miR-34a transcription, which in turn reduced PD-L1. MiR-34a reconstitution in EBNA2-transfected DLBCL reduced PD-L1 expression and increased its immunogenicity in mixed lymphocyte reactions (MLR) and in three-dimensional biomimetic microfluidic chips. Given the importance of PD-L1 inhibition in immunotherapy and miR-34a dysregulation in cancers, our findings may have important implications for combinatorial immunotherapy, which include IC inhibiting antibodies and miR-34a, for EBV-associated cancers.


Assuntos
Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/metabolismo , Infecções por Vírus Epstein-Barr/complicações , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/imunologia , Linfoma Difuso de Grandes Células B/imunologia , MicroRNAs/genética , Proteínas Virais/metabolismo , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/virologia , Prognóstico , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Células Tumorais Cultivadas , Proteínas Virais/genética
7.
PLoS One ; 13(1): e0190766, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29324872

RESUMO

As the founding member of the microRNA (miRNA) gene family, insights into lin-4 regulation and function have laid a conceptual foundation for countless miRNA-related studies that followed. We previously showed that a transcriptional lin-4 reporter in C. elegans was positively regulated by a lin-4-complementary element (LCE), and by lin-4 itself. In this study, we sought to (1) identify additional factors required for lin-4 reporter expression, and (2) validate the endogenous relevance of a potential positive autoregulatory mechanism of lin-4 expression. We report that all four core nuclear RNAi factors (nrde-1, nrde-2, nrde-3 and nrde-4), positively regulate lin-4 reporter expression. In contrast, endogenous lin-4 levels were largely unaffected in nrde-2;nrde-3 mutants. Further, an endogenous LCE deletion generated by CRISPR-Cas9 revealed that the LCE was also not necessary for the activity of the endogenous lin-4 promoter. Finally, mutations in mature lin-4 did not reduce primary lin-4 transcript levels. Taken together, these data indicate that under growth conditions that reveal effects at the transgenic locus, a direct, positive autoregulatory mechanism of lin-4 expression does not occur in the context of the endogenous lin-4 locus.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Regiões Promotoras Genéticas , Interferência de RNA , Transcrição Gênica
9.
Epigenetics ; 9(1): 27-36, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24185374

RESUMO

The regulation of gene expression by non-coding RNAs (ncRNAs) has become a new paradigm in biology. RNA-mediated gene silencing pathways have been studied extensively, revealing diverse epigenetic and posttranscriptional mechanisms. In contrast, the roles of ncRNAs in activating gene expression remains poorly understood. In this review, we summarize the current knowledge of gene activation by small RNAs, long non-coding RNAs, and enhancer-derived RNAs, with an emphasis on epigenetic mechanisms.


Assuntos
RNA não Traduzido/metabolismo , Ativação Transcricional/fisiologia , Animais , Elementos Facilitadores Genéticos , Epigênese Genética , Inativação Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA não Traduzido/genética
10.
Cell Cycle ; 13(5): 772-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24398561

RESUMO

The conserved lin-4 microRNA (miRNA) regulates the proper timing of stem cell fate decisions in C. elegans by regulating stemness genes such as lin-14 and lin-28. (1)(-) (3) While lin-4 is upregulated toward the end of the first larval stage and functions as an essential developmental timing "switch", little is known about how lin-4 expression is regulated. (4) Here we show that in C. elegans hypodermal seam cells, transcription of lin-4 is positively regulated by lin-4 itself. In these cells, lin-4 activates its own transcription through a conserved lin-4-complementary element (LCE) in its promoter. We further show that lin-4 is required to recruit RNA polymerase II to its own promoter, and that lin-4 overexpression is sufficient for autoactivation. Finally, we show that a protein complex specifically binds the LCE in vitro, and that mutations that abolish this binding also reduce the in vivo expression of a plin-4:GFP reporter. Thus, we describe the first in vivo evidence of RNA activation (RNAa) by an endogenous miRNA, and provide new insights into an elegant autoregulatory mechanism that ensures the proper timing of stem cell fate decisions in development.


Assuntos
Caenorhabditis elegans/metabolismo , MicroRNAs/genética , RNA de Helmintos/metabolismo , Animais , Sequência de Bases , Caenorhabditis elegans/citologia , Homeostase , MicroRNAs/metabolismo , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Células-Tronco/fisiologia , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA