Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 31(2): 224-232, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29173048

RESUMO

We explored the genetic basis of the promiscuous symbiosis of Sophora flavescens with diverse rhizobia. To determine the impact of Nod factors (NFs) on the symbiosis of S. flavescens, nodulation-related gene mutants of representative rhizobial strains were generated. Strains with mutations in common nodulation genes (nodC, nodM, and nodE) failed to nodulate S. flavescens, indicating that the promiscuous nodulation of this plant is strictly dependent on the basic NF structure. Mutations of the NF decoration genes nodH, nodS, nodZ, and noeI did not affect the nodulation of S. flavescens, but these mutations affected the nitrogen-fixation efficiency of nodules. Wild-type Bradyrhizobium diazoefficiens USDA110 cannot nodulate S. flavescens, but we obtained 14 Tn5 mutants of B. diazoefficiens that nodulated S. flavescens. This suggested that the mutations had disrupted a negative regulator that prevents nodulation of S. flavescens, leading to nonspecific nodulation. For Ensifer fredii CCBAU 45436 mutants, the minimal NF structure was sufficient for nodulation of soybean and S. flavescens. In summary, the mechanism of promiscuous symbiosis of S. flavescens with rhizobia might be related to its nonspecific recognition of NF structures, and the host specificity of rhizobia may also be controlled by currently unknown nodulation-related genes.


Assuntos
Rhizobiaceae/fisiologia , Sophora/fisiologia , Simbiose/fisiologia , Mutação , Nodulação/genética , Nodulação/fisiologia , Sophora/genética , Sophora/microbiologia
2.
Mol Plant Microbe Interact ; 28(12): 1338-52, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26389798

RESUMO

In present study, we report our extensive survey on the diversity and biogeography of rhizobia associated with Sophora flavescens, a sophocarpidine (matrine)-containing medicinal legume. We additionally investigated the cross nodulation, infection pattern, light and electron microscopies of root nodule sections of S. flavescens infected by various rhizobia. Seventeen genospecies of rhizobia belonging to five genera with seven types of symbiotic nodC genes were found to nodulate S. flavescens in natural soils. In the cross-nodulation tests, most representative rhizobia in class α-Proteobacteria, whose host plants belong to different cross-nodulation groups, form effective indeterminate nodules, while representative rhizobia in class ß-Proteobacteria form ineffective nodules on S. flavescens. Highly host-specific biovars of Rhizobium leguminosarum (bv. trifolii and bv. viciae) and Rhizobium etli bv. phaseoli could establish symbioses with S. flavescens, providing further evidence that S. flavescens is an extremely promiscuous legume and it does not have strict selectivity on either the symbiotic genes or the species-determining housekeeping genes of rhizobia. Root-hair infection is found as the pattern that rhizobia have gained entry into the curled root hairs. Electron microscopies of ultra-thin sections of S. flavescens root nodules formed by different rhizobia show that the bacteroids are regular or irregular rod shape and nonswollen types. Some bacteroids contain poly-ß-hydroxybutyrate (PHB), while others do not, indicating the synthesis of PHB in bacteroids is rhizobia-dependent. The extremely promiscuous symbiosis between S. flavescens and different rhizobia provide us a basis for future studies aimed at understanding the molecular interactions of rhizobia and legumes.


Assuntos
Fixação de Nitrogênio , Rhizobium/fisiologia , Sophora/microbiologia , Genes de Plantas , Filogenia , Raízes de Plantas/microbiologia , Rhizobium/classificação , Rhizobium/genética , Microbiologia do Solo , Simbiose
3.
Int J Syst Evol Microbiol ; 65(Pt 2): 399-406, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25376850

RESUMO

Two novel Gram-stain-negative strains (CCBAU 03422(T) and CCBAU 03415) isolated from root nodules of Sophora flavescens were classified phylogenetically into the genus Phyllobacterium based on the comparative analysis of 16S rRNA and atpD genes. They showed 99.8 % rRNA gene sequence similarities to Phyllobacterium brassicacearum LMG 22836(T), and strain CCBAU 03422(T) showed 91.2 and 88.6 % atpD gene sequence similarities to strains Phyllobacterium endophyticum LMG 26470(T) and Phyllobacterium brassicacearum LMG 22836(T), respectively. Strain CCBAU 03422(T) contained Q-10 as its major quinone and showed a cellular fatty acid profile, carbon source utilization and other phenotypic characteristics differing from type strains of related species. DNA-DNA relatedness (lower than 48.8 %) further confirmed the differences between the novel strains and the type strains of related species. Strain CCBAU 03422(T) could nodulate and fix nitrogen effectively on its original host plant, Sophora flavescens. Based upon the results mentioned above, a novel species named Phyllobacterium sophorae is proposed and the type strain is CCBAU 03422(T) ( = A-6-3(T) = LMG 27899(T) = HAMBI 3508(T)).


Assuntos
Phyllobacteriaceae/classificação , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Sophora/microbiologia , Simbiose , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Phyllobacteriaceae/genética , Phyllobacteriaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
4.
Int J Syst Evol Microbiol ; 65(Pt 2): 497-503, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25385989

RESUMO

Five bacterial strains representing 45 isolates originated from root nodules of the medicinal legume Sophora flavescens were defined as two novel groups in the genus Rhizobium based on their phylogenetic relationships estimated from 16S rRNA genes and the housekeeping genes recA, glnII and atpD. These groups were distantly related to Rhizobium leguminosarum USDA 2370(T) (95.6 % similarity for group I) and Rhizobium phaseoli ATCC 14482(T) (93.4 % similarity for group II) in multilocus sequence analysis. In DNA-DNA hybridization experiments, the reference strains CCBAU 03386(T) (group I) and CCBAU 03470(T) (group II) showed levels of relatedness of 17.9-57.8 and 11.0-42.9 %, respectively, with the type strains of related species. Both strains CCBAU 03386(T) and CCBAU 03470(T) contained ubiquinone 10 (Q-10) as the major respiratory quinone and possessed 16 : 0, 18 : 0, 19 : 0 cyclo ω8c, summed feature 8 and summed feature 2 as major fatty acids, but did not contain 20 : 3 ω6,8,12c. Phenotypic features distinguishing both groups from all closely related species of the genus Rhizobium were found. Therefore, two novel species, Rhizobium sophorae sp. nov. for group I (type strain CCBAU 03386(T) = E5(T) = LMG 27901(T) = HAMBI 3615(T)) and Rhizobium sophoriradicis sp. nov. for group II (type strain CCBAU 03470(T) = C-5-1(T) = LMG 27898(T) = HAMBI 3510(T)), are proposed. Both groups were able to nodulate Phaseolus vulgaris and their hosts of origin (Sophora flavescens) effectively and their nodulation gene nodC was phylogenetically located in the symbiovar phaseoli.


Assuntos
Fixação de Nitrogênio , Filogenia , Rhizobium/classificação , Nódulos Radiculares de Plantas/microbiologia , Sophora/microbiologia , Simbiose , China , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Phaseolus , RNA Ribossômico 16S/genética , Rhizobium/genética , Rhizobium/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/química
5.
Microbiol Spectr ; 11(1): e0107922, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36656008

RESUMO

Bradyrhizobium arachidis strain CCBAU 051107 could differentiate into swollen and nonswollen bacteroids in determinate root nodules of peanut (Arachis hypogaea) and indeterminate nodules of Sophora flavescens, respectively, with different N2 fixation efficiencies. To reveal the mechanism of bacteroid differentiation and symbiosis efficiency in association with different hosts, morphologies, transcriptomes, and nitrogen fixation efficiencies of the root nodules induced by strain CCBAU 051107 on these two plants were compared. Our results indicated that the nitrogenase activity of peanut nodules was 3 times higher than that of S. flavescens nodules, demonstrating the effects of rhizobium-host interaction on symbiotic effectiveness. With transcriptome comparisons, genes involved in biological nitrogen fixation (BNF) and energy metabolism were upregulated, while those involved in DNA replication, bacterial chemotaxis, and flagellar assembly were significantly downregulated in both types of bacteroids compared with those in free-living cells. However, expression levels of genes involved in BNF, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, hydrogenase synthesis, poly-ß-hydroxybutyrate (PHB) degradation, and peptidoglycan biosynthesis were significantly greater in the swollen bacteroids of peanut than those in the nonswollen bacteroids of S. flavescens, while contrasting situations were found in expression of genes involved in urea degradation, PHB synthesis, and nitrogen assimilation. Especially higher expression of ureABEF and aspB genes in bacteroids of S. flavescens might imply that the BNF product and nitrogen transport pathway were different from those in peanut. Our study revealed the first differences in bacteroid differentiation and metabolism of these two hosts and will be helpful for us to explore higher-efficiency symbiosis between rhizobia and legumes. IMPORTANCE Rhizobial differentiation into bacteroids in leguminous nodules attracts scientists to investigate its different aspects. The development of bacteroids in the nodule of the important oil crop peanut was first investigated and compared to the status in the nodule of the extremely promiscuous medicinal legume Sophora flavescens by using just a single rhizobial strain of Bradyrhizobium arachidis, CCBAU 051107. This strain differentiates into swollen bacteroids in peanut nodules and nonswollen bacteroids in S. flavescens nodules. The N2-fixing efficiency of the peanut nodules is three times higher than that of S. flavescens. By comparing the transcriptomes of their bacteroids, we found that they have similar gene expression spectra, such as nitrogen fixation and motivity, but different spectra in terms of urease activity and peptidoglycan biosynthesis. Those altered levels of gene expression might be related to their functions and differentiation in respective nodules. Our studies provided novel insight into the rhizobial differentiation and metabolic alteration in different hosts.


Assuntos
Fabaceae , Fabaceae/microbiologia , Arachis , Transcriptoma , Sophora flavescens , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Nitrogênio/metabolismo , Peptidoglicano/metabolismo
6.
Microbiol Res ; 214: 19-27, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30031478

RESUMO

Site-specific insertion plasmid pVO155 was used to knockout the genes involved in the alternation of host range of strain Bradyrhizobium diazoefficiens USDA 110 from its original determinate-nodule-forming host soybean (Glycine max), to promiscuous and indeterminate-nodule-forming shrubby legume sophora (Sophora flavescens). Symbiotic phenotypes of these mutants inoculated to these two legumes, were compared to those infected by wild-type strain USDA 110. Six genes of the total fourteen Tn5 transposon mutated genes were broken using the pVO155 plasmid. Both Tn5 and pVO155-inserted mutants could nodulate S. flavescens with different morphologies of low-efficient indeterminate nodules. One to several rod or irregular bacteroids, containing different contents of poly-ß-hydroxybutyrate or polyphosphate were found within the symbiosomes in nodulated cells of S. flavescens infected by the pVO155-inserted mutants. Moreover, none of bacteroids were observed in the pseudonodules of S. flavescens, infected by wild-type strain USDA 110. These mutants had the nodulation ability with soybean but the symbiotic efficiency reduced to diverse extents. These findings enlighten the complicated interactions between rhizobia and legumes, i. e., mutation of genes involved in metabolic pathways, transporters, chemotaxis and mobility could alter the rhizobial entry and development of the bacteroid inside the nodules of a new host legume.


Assuntos
Bradyrhizobium/isolamento & purificação , Bradyrhizobium/fisiologia , Glycine max/microbiologia , Sophora/microbiologia , Simbiose , Bradyrhizobium/genética , Elementos de DNA Transponíveis , Deleção de Genes , Especificidade de Hospedeiro , Mutagênese Insercional , Nodulação
7.
Syst Appl Microbiol ; 39(2): 141-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26915496

RESUMO

With the increasing cultivation of medicinal legumes in agricultural fields, the rhizobia associated with these plants are facing new stresses, mainly from fertilization and irrigation. In this study, investigations on the nodulation of three cultivated medicinal legumes, Astragalus mongholicus, Astragalus membranaceus and Hedysarum polybotrys were performed. Bacterial isolates from root nodules of these legumes were subjected to genetic diversity and multilocus sequence analyses. In addition, the distribution of nodule bacteria related to soil factors and host plants was studied. A total 367 bacterial isolates were obtained and 13 genospecies were identified. The predominant microsymbionts were identified as Mesorhizobium septentrionale, Mesorhizobium temperatum, Mesorhizobium tianshanense, Mesorhizobium ciceri and Mesorhizobium muleiense. M. septentrionale was found in most root nodules especially from legumes grown in the barren soils (with low available nitrogen and low organic carbon contents), while M. temperatum was predominant in nodules where the plants were grown in the nitrogen-rich fields. A. mongholicus tended to be associated with M. septentrionale, M. temperatum and M. ciceri in different soils, while A. membranaceus and H. polybotrys tended to be associated with M. tianshanense and M. septentrionale, respectively. This study showed that soil fertility may be the main determinant for the distribution of rhizobia associated with these cultured legume plants.


Assuntos
Fabaceae/microbiologia , Variação Genética , Rhizobium/classificação , Rhizobium/genética , Microbiologia do Solo , DNA Espaçador Ribossômico , Tipagem de Sequências Multilocus , Filogenia , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA