Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 23, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191434

RESUMO

BACKGROUND: Viral diseases continue to pose a major threat to the world's commercial crops. The in-depth exploration and efficient utilization of resistance proteins have become crucial strategies for their control. However, current delivery methods for introducing foreign DNA suffer from host range limitations, low transformation efficiencies, tissue damage, or unavoidable DNA integration into the host genome. The nanocarriers provides a convenient channel for the DNA delivery and functional utilization of disease-resistant proteins. RESULTS: In this research, we identified a cysteine-rich venom protein (NbCRVP) in Nicotiana benthamiana for the first time. Virus-induced gene silencing and transient overexpression clarified that NbCRVP could inhibit the infection of tobacco mosaic virus, potato virus Y, and cucumber mosaic virus, making it a broad-spectrum antiviral protein. Yeast two-hybrid assay, co-immunoprecipitation, and bimolecular fluorescence complementation revealed that calcium-dependent lipid-binding (CaLB domain) family protein (NbCalB) interacted with NbCRVP to assist NbCRVP playing a stronger antiviral effect. Here, we demonstrated for the first time the efficient co-delivery of DNA expressing NbCRVP and NbCalB into plants using poly(amidoamine) (PAMAM) nanocarriers, achieving stronger broad-spectrum antiviral effects. CONCLUSIONS: Our work presents a tool for species-independent transfer of two interacting protein DNA into plant cells in a specific ratio for enhanced antiviral effect without transgenic integration, which further demonstrated new strategies for nanocarrier-mediated DNA delivery of disease-resistant proteins.


Assuntos
Nicotiana , Vírus de RNA , Nicotiana/genética , Cálcio , DNA , Antivirais/farmacologia
2.
Front Neurol ; 15: 1421977, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045431

RESUMO

Objective: Postoperative deep venous thrombosis (DVT) is commonly observed in patients undergoing craniotomy and is associated with a high incidence of pulmonary embolism and poor clinical outcomes. Herein, we investigated the prophylactic effect of DVT of intraoperative intermittent pneumatic compression (IPC) in patients undergoing craniotomy. Methods: A total of 516 patients who underwent elective craniotomy between December 2021 and December 2022 were enrolled in this study. Patients were randomly assigned to the intervention group (received intraoperative IPC) or control group (without IPC). Lower extremity ultrasound was performed on both legs before and after surgery (1 h, 24 h, and 7 days post-intervention). DVT was defined as the visualization of a thrombus within the vein lumen of the leg. Coagulation and platelet function were measured at the start and end of the craniotomy. Results: A total of 504 patients (251 in the intervention group and 253 in the control group) completed the study. Among these patients, 20.4% (103/504) developed postoperative DVT within the first week after surgery, with 16.7% occurring within 24 h. The incidence of postoperative DVT in the intervention group (9.6%, 24/251) was significantly lower than that in the control group (22.9%, 58/253, p < 0.001). Intraoperative IPC reduced the risk of DVT by 64.6% (0.354, 95% CI, 0.223-0.564, p < 0.001). There was no significant difference in coagulation and platelet function between the two groups (all p > 0.05). Conclusion: DVT may develop within 24 h after the craniotomy. Intraoperative application of IPC reduces the incidence of postoperative DVT.

3.
Front Genet ; 14: 1290466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259624

RESUMO

Potato virus Y (PVY) disease is a global problem that causes significant damage to crop quality and yield. As traditional chemical control methods are ineffective against PVY, it is crucial to explore new control strategies. MicroRNAs (miRNAs) play a crucial role in plant and animal defense responses to biotic and abiotic stresses. These endogenous miRNAs act as a link between antiviral gene pathways and host immunity. Several miRNAs target plant immune genes and are involved in the virus infection process. In this study, we conducted small RNA sequencing and transcriptome sequencing on healthy and PVY-infected N. benthamiana tissues (roots, stems, and leaves). Through bioinformatics analysis, we predicted potential targets of differentially expressed miRNAs using the N. benthamiana reference genome and the PVY genome. We then compared the identified differentially expressed mRNAs with the predicted target genes to uncover the complex relationships between miRNAs and their targets. This study successfully constructed a miRNA-mRNA network through the joint analysis of Small RNA sequencing and transcriptome sequencing, which unveiled potential miRNA targets and identified potential binding sites of miRNAs on the PVY genome. This miRNA-mRNA regulatory network suggests the involvement of miRNAs in the virus infection process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA