Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 31(6): 896-908, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18922471

RESUMO

We describe the NMR structure of DsbB, a polytopic helical membrane protein. DsbB, a bacterial cytoplasmic membrane protein, plays a key role in disulfide bond formation. It reoxidizes DsbA, the periplasmic protein disulfide oxidant, using the oxidizing power of membrane-embedded quinones. We determined the structure of an interloop disulfide bond form of DsbB, an intermediate in catalysis. Analysis of the structure and interactions with substrates DsbA and quinone reveals functionally relevant changes induced by these substrates. Analysis of the structure, dynamics measurements, and NMR chemical shifts around the interloop disulfide bond suggest how electron movement from DsbA to quinone through DsbB is regulated and facilitated. Our results demonstrate the extraordinary utility of NMR for functional characterization of polytopic integral membrane proteins and provide insights into the mechanism of DsbB catalysis.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/enzimologia , Dissulfetos/metabolismo , Escherichia coli/citologia , Escherichia coli/enzimologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Sítios de Ligação , Catálise , Cisteína/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Escherichia coli/química , Bicamadas Lipídicas/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oxirredução , Periplasma/enzimologia , Isomerases de Dissulfetos de Proteínas/química , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Soluções , Ubiquinona
2.
J Phys Chem B ; 115(49): 14822-30, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22034842

RESUMO

In the present work, the factors that determine EPR line shapes from spin labels at the protein-hydrocarbon interface of a ß-barrel membrane protein are examined. The EPR spectra from hydrocarbon facing sites in the outer membrane protein A (OmpA) are highly dependent upon the detergent or lipid into which OmpA is reconstituted. In general, line shapes at these sites are correlated with the solvent accessibility in the supporting amphiphile. A notable exception is CHAPS, which yields rigid limit EPR line shapes for labels at every position along a transmembrane ß-strand in OmpA. EPR line shapes from the surface of OmpA are not strongly influenced by steric interference with neighboring side chains, but are modulated by solutes that should interact with hydrophobic surfaces. These results suggest that differences in EPR spectra in different supporting environments are not the result of differences in protein dynamics but are a result of different configurations or rotameric states that are assumed by the label. This conclusion is supported by distance measurements across the OmpA ß-barrel, which indicate that labels yielding more motionally restricted line shapes interact more closely with the protein surface. These results have implications for the use of spin-label-derived distance constraints in protein structure determination and demonstrate that spin labels on membrane proteins provide a highly sensitive probe for the environment surrounding a membrane protein.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Bicamadas Lipídicas/química , Ácidos Cólicos/química , Detergentes/química , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/metabolismo , Ligação de Hidrogênio , Micelas , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Marcadores de Spin
3.
J Am Chem Soc ; 129(26): 8320-7, 2007 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-17564441

RESUMO

Aromatic residues are frequently found in helical and beta-barrel integral membrane proteins enriched at the membrane-water interface. Although the importance of these residues in membrane protein folding has been rationalized by thermodynamic partition measurements using peptide model systems, their contribution to the stability of bona fide membrane proteins has never been demonstrated. Here, we have investigated the contribution of interfacial aromatic residues to the thermodynamic stability of the beta-barrel outer membrane protein OmpA from Escherichia coli in lipid bilayers by performing extensive mutagenesis and equilibrium folding experiments. Isolated interfacial tryptophanes contribute -2.0 kcal/mol, isolated interfacial tyrosines contribute -2.6 kcal/mol, and isolated interfacial phenylalanines contribute -1.0 kcal/mol to the stability of this protein. These values agree well with the prediction from the Wimley-White interfacial hydrophobicity scale, except for tyrosine residues, which contribute more than has been expected from the peptide models. Double mutant cycle analysis reveals that interactions between aromatic side chains become significant when their centroids are separated by less than 6 A but are nearly insignificant above 7 A. Aromatic-aromatic side chain interactions are on the order of -1.0 to -1.4 kcal/mol and do not appear to depend on the type of aromatic residue. These results suggest that the clustering of aromatic side chains at membrane interfaces provides an additional heretofore not yet recognized driving force for the folding and stability of integral membrane proteins.


Assuntos
Aminoácidos Aromáticos/química , Proteínas da Membrana Bacteriana Externa/química , Dobramento de Proteína , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Bicamadas Lipídicas/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Termodinâmica , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA