Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Glia ; 69(9): 2133-2145, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33956370

RESUMO

Our recent finding has demonstrated that astrocytes confer neuroprotection by endogenously producing ciliary neurotrophic factor (CNTF) via transient receptor potential vanilloid 1 (TRPV1) in Parkinson's disease (PD). In this study, the possible molecular target for TRPV1-mediated CNTF production and its neuroprotective effects on dopamine neurons were further investigated. For comparison, glial cell-line derived neurotrophic factor (GDNF) was also examined. The results show that TRPV1-ribosomal protein 70 S6 kinase (p70S6K) signaling on astrocytes produces endogenous CNTF in the SN of MPP+ -lesioned rat. By marked contrast, the expression of GDNF on astrocytes is independent of TRPV1-p70S6K signaling. Administration of a TRPV1 agonist, capsaicin, increases levels of phosphorylated p70S6K (p-p70S6K; activation of p70S6K) on astrocytes, resulting in the survival of dopamine neurons and behavioral recovery through endogenous production of CNTF in the MPP+ -lesioned rat model of PD. Immunohistochemical analysis reveals expression of p-p70S6K on astrocytes in the SN of PD patients, indicating relevance to human PD. The present in vivo data is the first to demonstrate that astrocytic TRPV1-p70S6K signaling plays a pivotal role as endogenous neuroprotective, and it may constitute a novel therapeutic target for treating PD.


Assuntos
Neurônios Dopaminérgicos , Fármacos Neuroprotetores , 1-Metil-4-fenilpiridínio/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Astrócitos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Fármacos Neuroprotetores/farmacologia , Ratos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Substância Negra/metabolismo
2.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801783

RESUMO

The present study investigated expression of endogenous interleukin-13 (IL-13) and its possible function in the hippocampus of prothrombin kringle-2 (pKr-2)-lesioned rats. Here we report that intrahippocampal injection of pKr-2 revealed a significant loss of NeuN-immunopositive (NeuN+) and Nissl+ cells in the hippocampus at 7 days after pKr-2. In parallel, pKr-2 increased IL-13 levels, which reached a peak at 3 days post pKr-2 and sustained up to 7 days post pKr-2. IL-13 immunoreactivity was seen exclusively in activated microglia/macrophages and neutrophils, but not in neurons or astrocytes. In experiments designed to explore the involvement of IL-13 in neurodegeneration, IL-13 neutralizing antibody (IL-13Nab) significantly increased survival of NeuN+ and Nissl+ cells. Accompanying neuroprotection, immunohistochemical analysis indicated that IL-13Nab inhibited pKr-2-induced expression of inducible nitric oxide synthase and myeloperoxidase within activated microglia/macrophages and neutrophils, possibly resulting in attenuation of reactive oxygen species (ROS) generation and oxidative damage of DNA and protein. The current findings suggest that the endogenous IL-13 expressed in pKr-2 activated microglia/macrophages and neutrophils might be harmful to hippocampal neurons via oxidative stress.


Assuntos
Hipocampo/metabolismo , Interleucina-13/fisiologia , Estresse Oxidativo , Protrombina/química , Animais , Astrócitos/metabolismo , Dano ao DNA , Feminino , Hipocampo/efeitos dos fármacos , Kringles , Macrófagos/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Neutrófilos/metabolismo , Oxigênio/química , Domínios Proteicos , Ratos , Ratos Sprague-Dawley
3.
Int J Mol Sci ; 20(8)2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31010119

RESUMO

The present study investigated the effects of activated microglia-derived interleukin-4 (IL-4) and IL-13 on neurodegeneration in prothrombin kringle-2 (pKr-2)-treated rat cortex. pKr-2 was unilaterally injected into the Sprague-Dawley rat cerebral cortex and IL-4 and IL-13 neutralizing antibody was used to block the function of IL-4 and IL-13. Immunohistochemical analysis showed a significant loss of NeuN+ and Nissl+ cells and an increase of OX-42+ cells in the cortex at seven days post pKr-2. The levels of IL-4 and IL-13 expression were upregulated in the activated microglia as early as 12 hours post pKr-2 and sustained up to seven days post pKr-2. Neutralization by IL-4 or IL-13 antibodies (NA) significantly increased neuronal survival in pKr-2-treated rat cortex in vivo by suppressing microglial activation and the production of reactive oxygen species, as analyzed by immunohisotochemistry and hydroethidine histochemistry. These results suggest that IL-4 and IL-13 that were endogenously expressed from reactive microglia may play a critical role on neuronal death by regulating oxidative stress during the neurodegenerative diseases, such as Alzheimer's disease and dementia.


Assuntos
Córtex Cerebral/patologia , Interleucina-13/toxicidade , Interleucina-4/toxicidade , Kringles , Neurotoxinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Protrombina/química , Protrombina/toxicidade , Animais , Feminino , Mediadores da Inflamação/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Modelos Biológicos , Degeneração Neural/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
4.
Apoptosis ; 23(11-12): 707-709, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30293220

RESUMO

The original version of this article contained a mistake. The bands for HA Tag and t-ERK in Figs. 2d, 2h, 3d are incorrect. The author informs that these errors had no influence in the scientific content of the paper. The corrected figures (Figs. 2 and 3) are given below.

5.
Mediators Inflamm ; 2018: 4591289, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30692871

RESUMO

Neuroinflammation is the neuropathological feature of Parkinson's disease (PD) and causes microglial activation and activated microglia-derived oxidative stress in the PD patients and PD animal models, resulting in neurodegeneration. The present study examined whether norfluoxetine (a metabolite of fluoxetine) could regulate neuroinflammation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine (MPTP) mouse model of PD and rescue dopamine neurons. Analysis by tyrosine hydroxylase (TH) immunohistochemistry demonstrated that norfluoxetine prevents degeneration of nigrostriatal dopamine neurons in vivo in MPTP-lesioned mice compared to vehicle-treated MPTP-lesioned control mice. MAC-1 immunostaining and hydroethidine histochemical staining showed that norfluoxetine neuroprotection is accompanied by inhibiting MPTP-induced microglial activation and activated microglia-derived reactive oxygen species production in vivo, respectively. In the separate experiments, treatment with norfluoxetine inhibited NADPH oxidase activation and nitrate production in LPS-treated cortical microglial cultures in vitro. Collectively, these in vivo and in vitro results suggest that norfluoxetine could be employed as a novel therapeutic agent for treating PD, which is associated with neuroinflammation and microglia-derived oxidative stress.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Fluoxetina/análogos & derivados , Microglia/citologia , Doença de Parkinson/tratamento farmacológico , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Fluoxetina/uso terapêutico , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/fisiopatologia , Ratos , Ratos Sprague-Dawley
6.
Int J Mol Sci ; 19(11)2018 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-30423807

RESUMO

We demonstrated that capsaicin (CAP), an agonist of transient receptor potential vanilloid subtype 1 (TRPV1), inhibits microglia activation and microglia-derived oxidative stress in the substantia nigra (SN) of MPP⁺-lesioned rat. However, the detailed mechanisms how microglia-derived oxidative stress is regulated by CAP remain to be determined. Here we report that ciliary neurotrophic factor (CNTF) endogenously produced by CAP-activated astrocytes through TRPV1, but not microglia, inhibits microglial activation and microglia-derived oxidative stress, as assessed by OX-6 and OX-42 immunostaining and hydroethidine staining, respectively, resulting in neuroprotection. The significant increase in levels of CNTF receptor alpha (CNTFRα) expression was evident on microglia in the MPP⁺-lesioned rat SN and the observed beneficial effects of CNTF was abolished by treatment with CNTF receptor neutralizing antibody. It is therefore likely that CNTF can exert its effect via CNTFRα on microglia, which rescues dopamine neurons in the SN of MPP⁺-lesioned rats and ameliorates amphetamine-induced rotations. Immunohistochemical analysis revealed also a significantly increased expression of CNTFRα on microglia in the SN from human Parkinson's disease patients compared with age-matched controls, indicating that these findings may have relevance to the disease. These data suggest that CNTF originated from TRPV1 activated astrocytes may be beneficial to treat neurodegenerative disease associated with neuro-inflammation such as Parkinson's disease.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Fator Neurotrófico Ciliar/farmacologia , Neurônios Dopaminérgicos/patologia , Microglia/patologia , Neuroproteção/efeitos dos fármacos , Síndromes Neurotóxicas/patologia , Estresse Oxidativo , Idoso , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Capsaicina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Biológicos , Degeneração Neural/patologia , Estresse Oxidativo/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptor do Fator Neutrófico Ciliar/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Canais de Cátion TRPV/metabolismo
7.
Biochem Biophys Res Commun ; 482(4): 980-986, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27899315

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder in which dopamine (DA) neurons in the substantia nigra pars compacta (SNpc) region are selectively destroyed. Sonic hedgehog (Shh) has been well known to play a key role in a variety of processes such as embryogenesis, cell proliferation and protection, and tissue repair during inflammation. However, the evidences for the innate role of Shh in adult brain injury are presently lacking and studies have been needed to unveil the importance of Shh in the process of neurodegeneration. Here, we investigated the role of Shh in the pathologic progress of Parkinson's disease in MPTP-induced animal model system. Interestingly, we observed that Shh expression was gradually increased in MPTP affected SNpc region. Activated microglia exclusively expressed SHH in vivo and we could recapitulate Shh induction in activated cultured primary microglia cells. Using the SHH responsive Cre-loxP binary genetic reporter transgenic mouse system, we also found that most of the cell types except for oligodendrocyte in the SNpc region reacted to the SHH by MPTP injection. Taken together, activated microglia induced Shh expression and most neural cells except oligodendrocyte responded to microglia-derived SHH in MPTP-treated SN. These results suggest that SHH in activated microglia by MPTP-injection might be involved in the innate processes of recovery from neurotoxin induced injury in the PD animal model system.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Proteínas Hedgehog/genética , Doença de Parkinson Secundária/genética , Doença de Parkinson Secundária/patologia , Substância Negra/patologia , Regulação para Cima , Animais , Células Cultivadas , Modelos Animais de Doenças , Proteínas Hedgehog/análise , Proteínas Hedgehog/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Lipopolissacarídeos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Microglia , Doença de Parkinson Secundária/imunologia , Substância Negra/imunologia , Substância Negra/metabolismo
8.
J Biol Chem ; 290(4): 2321-33, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25477508

RESUMO

Glycogen synthase kinase 3ß (GSK3ß) participates in many cellular processes, and its dysregulation has been implicated in a wide range of diseases such as obesity, type 2 diabetes, cancer, and Alzheimer disease. Inactivation of GSK3ß by phosphorylation at specific residues is a primary mechanism by which this constitutively active kinase is controlled. However, the regulatory mechanism of GSK3ß is not fully understood. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) has multiple biological functions that occur as the result of phosphorylation of diverse proteins that are involved in metabolism, synaptic function, and neurodegeneration. Here we show that GSK3ß directly interacts with and is phosphorylated by Dyrk1A. Dyrk1A-mediated phosphorylation at the Thr(356) residue inhibits GSK3ß activity. Dyrk1A transgenic (TG) mice are lean and resistant to diet-induced obesity because of reduced fat mass, which shows an inverse correlation with the effect of GSK3ß on obesity. This result suggests a potential in vivo association between GSK3ß and Dyrk1A regarding the mechanism underlying obesity. The level of Thr(P)(356)-GSK3ß was higher in the white adipose tissue of Dyrk1A TG mice compared with control mice. GSK3ß activity was differentially regulated by phosphorylation at different sites in adipose tissue depending on the type of diet the mice were fed. Furthermore, overexpression of Dyrk1A suppressed the expression of adipogenic proteins, including peroxisome proliferator-activated receptor γ, in 3T3-L1 cells and in young Dyrk1A TG mice fed a chow diet. Taken together, these results reveal a novel regulatory mechanism for GSK3ß activity and indicate that overexpression of Dyrk1A may contribute to the obesity-resistant phenotype through phosphorylation and inactivation of GSK3ß.


Assuntos
Regulação Enzimológica da Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Obesidade/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Células 3T3-L1 , Tecido Adiposo/metabolismo , Animais , Diferenciação Celular , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/tratamento farmacológico , Fenótipo , Fosforilação , RNA Interferente Pequeno/metabolismo , Treonina/química , Quinases Dyrk
9.
Mol Ther ; 23(3): 445-55, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25502903

RESUMO

Recent evidence has shown that Ras homolog enriched in brain (Rheb) is dysregulated in Alzheimer's disease (AD) brains. However, it is still unclear whether Rheb activation contributes to the survival and protection of hippocampal neurons in the adult brain. To assess the effects of active Rheb in hippocampal neurons in vivo, we transfected neurons in the cornu ammonis 1 (CA1) region in normal adult rats with an adeno-associated virus containing the constitutively active human Rheb (hRheb(S16H)) and evaluated the effects on thrombin-induced neurotoxicity. Transduction with hRheb(S16H) significantly induced neurotrophic effects in hippocampal neurons through activation of mammalian target of rapamycin complex 1 (mTORC1) without side effects such as long-term potentiation impairment and seizures from the alteration of cytoarchitecture, and the expression of hRheb(S16H) prevented thrombin-induced neurodegeneration in vivo, an effect that was diminished by treatment with specific neutralizing antibodies against brain-derived neurotrophic factor (BDNF). In addition, our results showed that the basal mTORC1 activity might be insufficient to mediate the level of BDNF expression, but hRheb(S16H)-activated mTORC1 stimulated BDNF production in hippocampal neurons. These results suggest that viral vector transduction with hRheb(S16H) may have therapeutic value in the treatment of neurodegenerative diseases such as AD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Região CA1 Hipocampal/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Neurônios/metabolismo , Neuropeptídeos/genética , Transdução Genética/métodos , Animais , Anticorpos Neutralizantes/farmacologia , Fator Neurotrófico Derivado do Encéfalo/agonistas , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Fator Neurotrófico Derivado do Encéfalo/genética , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Dependovirus/genética , Dependovirus/metabolismo , Expressão Gênica , Vetores Genéticos/administração & dosagem , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/agonistas , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neuropeptídeos/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Trombina/antagonistas & inibidores , Trombina/toxicidade
10.
Chem Sci ; 15(10): 3588-3595, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38455026

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative disease characterized by movement disorder. Despite current therapeutic efforts, PD progression and the loss of dopaminergic neurons in the substantia nigra remain challenging to prevent due to the complex and unclear molecular mechanism involved. We adopted a phenotype-based drug screening approach with neuronal cells to overcome these limitations. In this study, we successfully identified a small molecule with a promising therapeutic effect for PD treatment, called inflachromene (ICM), through our phenotypic screening strategy. Subsequent target identification using fluorescence difference in two-dimensional gel electrophoresis (FITGE) revealed that ICM ameliorates PD by targeting a specific form of Keap1. This interaction led to upregulating various antioxidants, including HO-1, NQO1, and glutathione, ultimately alleviating PD symptoms. Furthermore, ICM exhibited remarkable efficacy in inhibiting the loss of dopaminergic neurons and the activation of astrocytes and microglia, which are critical factors in PD pathology. Our findings suggest that the phenotypic approach employed in this study identified that ICM has potential for PD treatment, offering new hope for more effective therapeutic interventions in the future.

11.
Mediators Inflamm ; 2013: 370526, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23853428

RESUMO

The present study examined whether matrix metalloproteinase-3 (MMP-3) participates in the loss of dopaminergic (DA) neurons in the nigrostriatal pathway in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease with blood brain barrier (BBB) damage and infiltration of peripheral immune cells. Tyrosine hydroxylase (TH) immunostaining of brain sections from MPTP-treated mice showed that MPTP induced significant degeneration of nigrostriatal DA neurons. Moreover, FITC-labeled albumin detection and immunostaining revealed that MPTP caused damage to the BBB and increased the number of ED-1- and CD-3-immunopositive cells in the substantia nigra (SN). Genetic ablation of MMP-3 reduced the nigrostriatal DA neuron loss and improved motor function. This neuroprotective effect afforded by MMP-3 deletion was associated with the suppression of BBB disruption and a decrease in the number of ED-1- and CD-3-immunopositive cells in the SN. These data suggest that MMP-3 could play a crucial role in neurodegenerative diseases such as PD in which BBB damage and neuroinflammation are implicated.


Assuntos
Barreira Hematoencefálica/patologia , Inflamação/patologia , Metaloproteinase 3 da Matriz/metabolismo , Neurônios/metabolismo , Doença de Parkinson/patologia , Substância Negra/patologia , Animais , Barreira Hematoencefálica/metabolismo , Densitometria , Modelos Animais de Doenças , Dopamina/metabolismo , Regulação da Expressão Gênica , Imuno-Histoquímica , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia , Doença de Parkinson/metabolismo , Fagocitose , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Apoptosis ; 17(8): 784-96, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22555451

RESUMO

Cyclophilin, a cytosolic receptor for the immunosuppressive drug cyclosporin A, plays a role in diverse pathophysiologies along with its receptor, CD147. Although the interaction between cyclophilin A and CD147 is well established in inflammatory disease, that of cyclophilin B (CypB) with CD147 has not been fully explored, especially in cancer cell biology, and the exact molecular mechanism underlying such an association is poorly understood. In this study, we first identified high expression levels of CypB in 54 % of hepatocellular carcinoma patient tissues but in only 12.5 % of normal liver tissues. Then, we demonstrated that CypB overexpression protects human hepatoma cells against oxidative stress through its binding to CD147; this protective effect depends on the peptidyl prolyl isomerase activity of CypB. siRNA-mediated knockdown of CypB expression rendered hepatoma cells more vulnerable to ROS-mediated apoptosis. Furthermore, we also determined that a direct interaction between secreted CypB and CD147 regulates the extracellular signal-regulated kinase intracellular signaling pathway and is indispensible for the protective functions of CypB. For the first time, we demonstrated that CypB has an essential function in protecting hepatoma cells against oxidative stress through binding to CD147 and regulating the ERK pathway.


Assuntos
Basigina/metabolismo , Carcinoma Hepatocelular/metabolismo , Ciclofilinas/metabolismo , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases , Estresse Oxidativo , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Ciclofilinas/genética , Ativação Enzimática , Feminino , Expressão Gênica , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Análise Serial de Tecidos
13.
Exp Neurobiol ; 31(1): 42-53, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35256543

RESUMO

To explore the potential function of interleukin-13 (IL-13), lipopolysaccharide (LPS) or PBS as a control was unilaterally microinjected into striatum of rat brain. Seven days after LPS injection, there was a significant loss of neurons and microglial activation in the striatum, visualized by immunohistochemical staining against neuronal nuclei (NeuN) and the OX-42 (complement receptor type 3, CR3), respectively. In parallel, IL-13 immunoreactivity was increased as early as 3 days and sustained up to 7 days post LPS injection, compared to PBS-injected control and detected exclusively within microglia. Moreover, GFAP immunostaining and blood brain barrier (BBB) permeability evaluation showed the loss of astrocytes and disruption of BBB, respectively. By contrast, treatment with IL-13 neutralizing antibody (IL-13NA) protects NeuN+ neurons against LPS-induced neurotoxicity in vivo . Accompanying neuroprotection, IL-13NA reduced loss of GFAP+ astrocytes and damage of BBB in LPS-injected striatum. Intriguingly, treatment with IL-13NA produced neurotrophic factors (NTFs) on survived astrocytes in LPS-injected rat striatum. Taken together, the present study suggests that LPS induces expression of IL-13 on microglia, which contributes to neurodegeneration via damage on astrocytes and BBB disruption in the striatum in vivo.

14.
Cell Death Dis ; 13(6): 575, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773260

RESUMO

Aggregation of misfolded alpha-synuclein (α-synuclein) is a central player in the pathogenesis of neurodegenerative diseases. Therefore, the regulatory mechanism underlying α-synuclein aggregation has been intensively studied in Parkinson's disease (PD) but remains poorly understood. Here, we report p21-activated kinase 4 (PAK4) as a key regulator of α-synuclein aggregation. Immunohistochemical analysis of human PD brain tissues revealed an inverse correlation between PAK4 activity and α-synuclein aggregation. To investigate their causal relationship, we performed loss-of-function and gain-of-function studies using conditional PAK4 depletion in nigral dopaminergic neurons and the introduction of lentivirus expressing a constitutively active form of PAK4 (caPAK4; PAK4S445N/S474E), respectively. For therapeutic relevance in the latter setup, we injected lentivirus into the striatum following the development of motor impairment and analyzed the effects 6 weeks later. In the loss-of-function study, Cre-driven PAK4 depletion in dopaminergic neurons enhanced α-synuclein aggregation, intracytoplasmic Lewy body-like inclusions and Lewy-like neurites, and reduced dopamine levels in PAK4DAT-CreER mice compared to controls. Conversely, caPAK4 reduced α-synuclein aggregation, as assessed by a marked decrease in both proteinase K-resistant and Triton X100-insoluble forms of α-synuclein in the AAV-α-synuclein-induced PD model. Mechanistically, PAK4 specifically interacted with the NEDD4-1 E3 ligase, whose pharmacological inhibition and knockdown suppressed the PAK4-mediated downregulation of α-synuclein. Collectively, these results provide new insights into the pathogenesis of PD and suggest PAK4-based gene therapy as a potential disease-modifying therapy in PD.


Assuntos
Ubiquitina-Proteína Ligases Nedd4 , Doença de Parkinson , alfa-Sinucleína , Animais , Camundongos , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Substância Negra/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
15.
Br J Pharmacol ; 179(5): 998-1016, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34524687

RESUMO

BACKGROUND AND PURPOSE: There is a scarcity of information regarding the role of prothrombin kringle-2 (pKr-2), which can be generated by active thrombin, in hippocampal neurodegeneration and Alzheimer's disease (AD). EXPERIMENTAL APPROACH: To assess the role of pKr-2 in association with the neurotoxic symptoms of AD, we determined pKr-2 protein levels in post-mortem hippocampal tissues of patients with AD and the hippocampi of five familial AD (5XFAD) mice compared with those of age-matched controls and wild-type (WT) mice, respectively. In addition, we investigated whether the hippocampal neurodegeneration and object memory impairments shown in 5XFAD mice were mediated by changes to pKr-2 up-regulation. KEY RESULTS: Our results demonstrated that pKr-2 was up-regulated in the hippocampi of patients with AD and 5XFAD mice, but was not associated with amyloid-ß aggregation in 5XFAD mice. The up-regulation of pKr-2 expression was inhibited by preservation of the blood-brain barrier (BBB) via addition of caffeine to their water supply or by treatment with rivaroxaban, an inhibitor of factor Xa that is associated with thrombin production. Moreover, the prevention of up-regulation of pKr-2 expression reduced neurotoxic symptoms, such as hippocampal neurodegeneration and object recognition decline due to neurotoxic inflammatory responses in 5XFAD mice. CONCLUSION AND IMPLICATIONS: We identified a novel pathological mechanism of AD mediated by abnormal accumulation of pKr-2, which functions as an important pathogenic factor in the adult brain via blood brain barrier (BBB) breakdown. Thus, pKr-2 represents a novel target for AD therapeutic strategies and those for related conditions.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Kringles , Camundongos , Camundongos Transgênicos , Protrombina/metabolismo , Protrombina/uso terapêutico , Trombina
16.
Biol Pharm Bull ; 34(4): 538-44, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21467642

RESUMO

A series of fluoxetine, where the N-methylamino group was replaced and then simplified, were synthesized and their inhibitory effect was tested for nitric oxide (NO) production and inducible NO synthase (iNOS) expression in lipopolysaccharide (LPS)-induced BV2 cells. Although the synthesized compounds generally revealed weaker activity or greater cytotoxicity than fluoxetine, compound 10a, in which the N-methylamino group in fluoxetine was replaced by morpholine, and the trifluoromethylphenyl ring was substituted with simple oxo group, suppressed NO production dose-dependently at 10, 20 and 40 µM concentrations with less cytotoxicity than fluoxetine, and inhibited iNOS mRNA and protein expression at the same concentrations in LPS-induced BV2 cells. The results suggested that the trifluoromethylphenyl ring moiety in fluoxetine is not necessary for the suppression of NO production and that 10a has the potential as a potent inhibitor of NO production.


Assuntos
Anti-Inflamatórios/farmacologia , Fluoxetina/farmacologia , Compostos Heterocíclicos/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/biossíntese , Animais , Anti-Inflamatórios/síntese química , Linhagem Celular , Relação Dose-Resposta a Droga , Fluoxetina/análogos & derivados , Compostos Heterocíclicos/síntese química , Lipopolissacarídeos , Camundongos , Óxido Nítrico Sintase Tipo II/genética , RNA Mensageiro/metabolismo
17.
Antioxidants (Basel) ; 11(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35052603

RESUMO

Prunus cerasoides (PC) has been reported to have antimicrobial and anti-inflammatory properties, but its potential as a neuroprotective agent in a mouse model of cerebral ischemia has not been explored. Considering neuroglobin (Ngb), an endogenous neuroprotective factor, as a novel approach to neuroprotection, in this study, Ngb promoter activity, Ngb expression changes, and antioxidant protection by PC extract (PCE) and PC component compounds (PCCs) were analyzed in oxygen-glucose deprivation (OGD)-treated neurons. In vivo analysis involved transient middle cerebral artery occlusion (tMCAO) in mice with pre- and post-treatment exposure to PCE. Following ischemic stroke induction, neurological behavior scores were obtained, and cellular function-related signals were evaluated in the ischemic infarct areas. In addition to PCE, certain component compounds from PCE also significantly increased Ngb levels and attenuated the intracellular ROS production and cytotoxicity seen with OGD in primary neurons. Administration of PCE reduced the infarct volume and improved neurological deficit scores in ischemic stroke mice compared with the vehicle treatment. Increased Ngb levels in infarct penumbra with PCE treatment were also accompanied by decreased markers of apoptosis (activated p38 and cleaved caspase-3). Our findings point to the benefits of Ngb-mediated neuroprotection via PCE and its antioxidant activity in an ischemic stroke model.

18.
Exp Neurobiol ; 30(2): 155-169, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33707347

RESUMO

Stroke causes systemic immunosuppression. T lymphocytes are involved in infarct size in the early stages of stroke. However, the phenotypes of T lymphocytes and their functions in peripheral immune organs and the brain have not been well analyzed in the acute and chronic phases of stroke. Here, we investigated pathological phenotypic alterations in the systemic immune response, especially changes in T lymphocytes, from one day to six months after ischemic stroke in mice. Impairment in thymocyte numbers, development, proliferation, and apoptosis were observed for up to two weeks. The number of mature T cells in the spleen and blood decreased and showed reduced interferon-γ production. Increased numbers of CD4-CD8-CD3+ double-negative T cells were observed in the mouse brain during the early stages of stroke, whereas interleukin (IL)-10+Foxp3+ regulatory T lymphocytes increased from two weeks during the chronic phase. These phenotypes correlated with body weight and neurological severity scores. The recovery of T lymphocyte numbers and increases in IL-10+Foxp3+ regulatory T lymphocytes may be important for long-term neurological outcomes. Dynamic changes in T lymphocytes between the acute and chronic phases may play different roles in pathogenesis and recovery. This study provides fundamental information regarding the T lymphocyte alterations from the brain to the peripheral immune organs following stroke.

19.
J Neurosci Res ; 88(11): 2409-19, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20623539

RESUMO

Traumatic spinal cord injury (SCI) triggers inflammatory reactions in which various types of cells and cytokines are involved. Several proinflammatory cytokines are up-regulated after SCI and play crucial roles in determining the extent of secondary tissue damage. However, relatively little is known about antiinflammatory cytokines and their roles in spinal cord trauma. Recent studies have shown that an antiinflammatory cytokine, interleukin-4 (IL-4), is expressed and exerts various modulatory effects in CNS inflammation. We found in the present study that IL-4 was highly expressed at 24 hr after contusive SCI in rats and declined thereafter, with concurrent up-regulation of IL-4 receptor subunit IL-4alpha. The majority of IL-4-producing cells were myeloperoxidase-positive neutrophils. Injection of neutralizing antibody against IL-4 into the contused spinal cord did not significantly affect the expression levels of proinflammatory cytokines such as IL-1beta, IL-6, and tumor necrosis factor-alpha or other antiinflammatory cytokines such as IL-10 and transforming growth factor-beta. Instead, attenuation of IL-4 activity led to a marked increase in the extent of ED1-positive macrophage activation along the rostrocaudal extent at 7 days after injury. The enhanced macrophage activation was preceded by an increase in the level of monocyte chemoattractant protein-1 (MCP-1/CCL2). Finally, IL-4 neutralization resulted in more extensive cavitation at 4 weeks after injury. These results suggest that endogenous expression of antiinflammatory cytokine IL-4 regulates the extent of acute macrophage activation and confines the ensuing secondary cavity formation after spinal cord trauma.


Assuntos
Interleucina-4/biossíntese , Ativação de Macrófagos/fisiologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Animais , Western Blotting , Quimiocina CCL2/biossíntese , Contusões/patologia , Citocinas/biossíntese , Primers do DNA , Feminino , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Degeneração Neural/patologia , Infiltração de Neutrófilos , Ratos , Ratos Sprague-Dawley , Receptores de Interleucina-4/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/biossíntese
20.
J Neurosci Res ; 88(7): 1537-48, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20025058

RESUMO

We have shown that prothrombin kringle-2 (pKr-2), a domain of human prothrombin distinct from thrombin could activate cultured rat brain microglia in vitro. However, little is known whether pKr-2-induced microglial activation could cause neurotoxicity on dopaminergic (DA) neurons in vivo. To address this question, pKr-2 was injected into the rat substantia nigra (SN). Tyrosine hydroxylase (TH) immunohistochemistry experiments demonstrate significant loss of DA neurons seven days after injection of pKr-2. In parallel, pKr-2-activated microglia were detected in the SN with OX-42 and OX-6 immunohistochemistry. Reverse transcription PCR and double-label immunohistochemistry revealed that activated microglia in vivo exhibit early and transient expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and several proinflammatory cytokines. The pKr-2-induced loss of SN DA neurons was partially inhibited by the NOS inhibitor N(G)-nitro-L-arginine methyl ester hydrochloride, and the COX-2 inhibitor DuP-697. Extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase were activated in the SN as early as 1 hr after pKr-2 injection, and localized within microglia. Inhibition of these kinases led to attenuation of mRNA expression of iNOS, COX-2 and several proinflammatory cytokines, and rescue of DA neurons in the SN. Intriguingly, following treatment with pKr-2 in vitro, neurotoxicity was detected exclusively in co-cultures of mesencephalic neurons and microglia, but not microglia-free neuron-enriched mesencephalic cultures, indicating that microglia are required for pKr-2 neurotoxicity. Our results strongly suggest that microglia activated by endogenous compound(s), such as pKr-2, are implicated in the DA neuronal cell death in the SN.


Assuntos
Dopamina/metabolismo , Gliose/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Protrombina/metabolismo , Substância Negra/metabolismo , Animais , Antígeno CD11b/análise , Antígeno CD11b/metabolismo , Células Cultivadas , Técnicas de Cocultura , Ciclo-Oxigenase 2/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Feminino , Gliose/induzido quimicamente , Gliose/fisiopatologia , Mediadores da Inflamação/metabolismo , Kringles/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Protrombina/química , Protrombina/toxicidade , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Substância Negra/efeitos dos fármacos , Substância Negra/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA