Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 167(2): 204-217, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37674350

RESUMO

There is much interest in identifying novel pharmacotherapeutic targets that improve clinical outcomes for the treatment of alcohol use disorder (AUD). One promising target for therapeutic intervention is the relaxin family peptide 3 (RXFP3) receptor, a cognate receptor for neuropeptide relaxin-3, which has previously been implicated in regulating alcohol drinking behavior. Recently, we developed the first small-molecule RXFP3-selective negative allosteric modulator (NAM) RLX-33. Therefore, the goal of the present work was to characterize the impact of this novel NAM on affective-related behaviors and alcohol self-administration in rats. First, the effects of RLX-33 were tested on alcohol and sucrose self-administration in Wistar and alcohol-preferring P rats to determine the dose-response profile and specificity for alcohol. Then, we assessed the effects of systemic RLX-33 injection in Wistar rats in a battery of behavioral assays (open-field test, elevated zero maze, acoustic startle response test, and prepulse inhibition) and tested for alcohol clearance. We found that the lowest effective dose (5 mg/kg) reduced alcohol self-administration in both male and female Wistar rats, while in alcohol-preferring P rats, this effect was restricted to males, and there were no effects on sucrose self-administration or general locomotor activity. The characterization of affective and metabolic effects in Wistar rats generally found few locomotor, affective, or alcohol clearance changes, particularly at the 5 mg/kg dose. Overall, these findings are promising and suggest that RXFP3 NAM has potential as a pharmacological target for treating AUD.


Assuntos
Alcoolismo , Relaxina , Ratos , Masculino , Feminino , Animais , Ratos Wistar , Reflexo de Sobressalto , Relaxina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Etanol , Alcoolismo/tratamento farmacológico , Alcoolismo/metabolismo , Sacarose , Receptores de Peptídeos
2.
Bioorg Med Chem Lett ; 80: 129120, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36587872

RESUMO

GPR88 is an orphan G protein-coupled receptor which has been implicated in a number of striatal-associated disorders. Herein we describe the synthesis and pharmacological characterization of the first GPR88 radioligand, [3H]RTI-33, derived from a synthetic agonist RTI-13951-33. [3H]RTI-33 has a specific activity of 83.4 Ci/mmol and showed one-site, saturable binding (KD of 85 nM) in membranes prepared from stable PPLS-HA-hGPR88-CHO cells. A competition binding assay was developed to determine binding affinities of several known GPR88 agonists. This radioligand represents a powerful tool for future mechanistic and cell-based ligand-receptor interaction studies of GPR88.


Assuntos
Proteínas de Transporte , Receptores Acoplados a Proteínas G , Cricetinae , Animais , Cricetulus , Receptores Acoplados a Proteínas G/agonistas , Ensaio Radioligante
3.
Addict Biol ; 27(6): e13227, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36301207

RESUMO

GPR88 is an orphan G-protein-coupled receptor that is considered a potential target to treat neuropsychiatric disorders, including addiction. Most knowledge about GPR88 function stems from knockout mouse studies, and in vivo pharmacology is still scarce. Here we examine the effects of the novel brain-penetrant agonist RTI-13951-33 on several alcohol-related behaviours in the mouse. In the intermittent-access-two-bottle-choice paradigm, the compound reduced excessive voluntary alcohol drinking, while water drinking was intact. This was observed for C57BL/6 mice, as well as for control but not Gpr88 knockout mice, demonstrating efficacy and specificity of the drug in vivo. In the drinking-in-the-dark paradigm, RTI-13951-33 also reduced binge-like drinking behaviour for control but not Gpr88 knockout mice, confirming the alcohol consumption-reducing effect and in vivo specificity of the drug. When C57BL/6 mice were trained for alcohol self-administration, RTI-13951-33 decreased the number of nose-pokes over a 4-h session and reduced the number of licks and bursts of licks, suggesting reduced motivation to obtain alcohol. Finally, RTI-13951-33 did not induce any place preference or aversion but reduced the expression of conditioned place preference to alcohol, indicative of a reduction of alcohol-reward seeking. Altogether, data show that RTI-13951-33 limits alcohol intake under distinct conditions that require consummatory behaviour, operant response or association with contextual cues. RTI-13951-33 therefore is a promising lead compound to evaluate GPR88 as a therapeutic target for alcohol use disorders. More broadly, RTI-13951-33 represents a unique tool to better understand GPR88 function, disentangle receptor roles in development from those in the adult and perhaps address other neuropsychiatric disorders.


Assuntos
Alcoolismo , Animais , Camundongos , Alcoolismo/tratamento farmacológico , Camundongos Endogâmicos C57BL , Consumo de Bebidas Alcoólicas/psicologia , Etanol/farmacologia , Camundongos Knockout , Receptores Acoplados a Proteínas G
4.
J Chem Inf Model ; 60(12): 6634-6641, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33259207

RESUMO

Blocking the interaction between the Gßγ protein and the glycine receptor (GlyR) has emerged as a promising pharmacological strategy to treat acute alcohol intoxication by inhibiting ethanol potentiation on GlyR. M554 is a recently discovered small molecule capable of binding to Gßγ with potent in vitro and in vivo inhibitory activity. This compound has been tested as a mixture of diastereomers, and no information is available concerning the stereospecific activity of each species, which is critical to pursue efforts on lead optimization and drug development. In this work, we explored the differential activity of four M554 stereoisomers by in silico molecular dynamics simulations and electrophysiological experiments. Our results revealed that the (R,R)-M554 stereoisomer is a promising lead compound that inhibits ethanol potentiation of GlyR.


Assuntos
Etanol , Receptores de Glicina , Estereoisomerismo
5.
J Biol Chem ; 291(36): 18791-8, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27402845

RESUMO

The acute intoxicating effects of ethanol in the central nervous system result from the modulation of several molecular targets. It is widely accepted that ethanol enhances the activity of the glycine receptor (GlyR), thus enhancing inhibitory neurotransmission, leading to motor effects, sedation, and respiratory depression. We previously reported that small peptides interfered with the binding of Gßγ to the GlyR and consequently inhibited the ethanol-induced potentiation of the receptor. Now, using virtual screening, we identified a subset of small molecules capable of interacting with the binding site of Gßγ. One of these compounds, M554, inhibited the ethanol potentiation of the GlyR in both evoked currents and synaptic transmission in vitro When this compound was tested in vivo in mice treated with ethanol (1-3.5 g/kg), it was found to induce a faster recovery of motor incoordination in rotarod experiments and a shorter sedative effect in loss of righting reflex assays. This study describes a novel molecule that might be relevant for the design of useful therapeutic compounds in the treatment of acute alcohol intoxication.


Assuntos
Intoxicação Alcoólica/tratamento farmacológico , Etanol/efeitos adversos , Subunidades beta da Proteína de Ligação ao GTP/antagonistas & inibidores , Subunidades gama da Proteína de Ligação ao GTP/antagonistas & inibidores , Peptídeos , Receptores de Glicina/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , Intoxicação Alcoólica/metabolismo , Animais , Etanol/farmacologia , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Receptores de Glicina/metabolismo
6.
J Biomed Sci ; 24(1): 23, 2017 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-28347302

RESUMO

BACKGROUND: GPR88 is an orphan G protein-coupled receptor highly expressed in the striatum and is implicated in basal ganglia-associated disorders. However, the receptor functions of GPR88 are still largely unknown due to the lack of potent and selective ligands appropriate for central nervous system investigation. Development of a high-throughput screening assay for GPR88 should facilitate the discovery of novel ligands to probe GPR88 functions. METHODS: In this paper, we describe the development of a CHO-Gαqi5-GPR88 cell-based calcium mobilization assay. The assay takes advantage of functional coupling of GPR88 with the promiscuous Gαqi5 protein and consequent mobilization of intracellular calcium, which can be measured in a 384-well format with a Fluorescent Imaging Plate Reader. RESULTS: The CHO-Gαqi5-GPR88 cell-based calcium mobilization assay was validated by the structure-activity relationship study of known GPR88 agonist (1R,2R)-2-PCCA analogues. The assay was automated and miniaturized to a 384-well format, and was deemed robust and reproducible with a Z'-factor of 0.72 and tolerated dimethyl sulfoxide to a final concentration of 2%. Screening a pilot neurotransmitter library consisting of 228 compounds yielded 10 hits, but none of the hits were confirmed as GPR88 agonists in follow-up assays. CONCLUSIONS: We have developed a high-throughput calcium mobilization assay for the orphan receptor GPR88. This calcium mobilization assay can be used to identify several different types of GPR88 ligands including agonists, competitive and noncompetitive antagonists, inverse agonists, and allosteric modulators. These ligands will serve as valuable tools to probe signaling mechanisms and in vivo functions of GPR88, and could expedite development of novel therapies for diseases potentially mediated by GPR88.


Assuntos
Cálcio/metabolismo , Cromanos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Receptores Acoplados a Proteínas G/agonistas , p-Cloroanfetamina/análogos & derivados , Animais , Células CHO , Cricetulus , Relação Estrutura-Atividade , p-Cloroanfetamina/farmacologia
7.
Bioorg Med Chem ; 25(2): 805-812, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27956039

RESUMO

The orphan receptor GPR88 is an attractive therapeutic target because of its implications in a number of basal ganglia-associated disorders. To date, pharmacological characterization of GPR88 has been limited due to the lack of potent and selective agonists and antagonists appropriate for CNS investigations. We have previously reported that GPR88 couples to Gαi proteins and modulates cAMP levels upon treatment with a small molecule agonist 2-PCCA. Recently, another chemotype of GPR88 agonist, represented by 2-AMPP [(2S)-N-((1R)-2-amino-1-(4-(2-methylpentyloxy)-phenyl)ethyl)-2-phenylpropanamide], has also been discovered. In this report, a new series of 2-AMPP structurally related 4-hydroxyphenylglycine and 4-hydroxyphenylglycinol derivatives have been designed and evaluated for agonist activity at GPR88. The structure-activity relationship (SAR) studies suggest that the amine group in 2-AMPP can be replaced by hydroxyl, ester and amide groups, resulting in analogues with good to moderate potency, whereas the phenyl group on the amide cap is essential for activity and has limited size, shape and electronic tolerance.


Assuntos
Desenho de Fármacos , Etilenoglicóis/farmacologia , Glicina/análogos & derivados , Fenóis/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Etilenoglicóis/síntese química , Etilenoglicóis/química , Glicina/síntese química , Glicina/química , Glicina/farmacologia , Humanos , Estrutura Molecular , Fenóis/síntese química , Fenóis/química , Relação Estrutura-Atividade
8.
J Neuroinflammation ; 13(1): 110, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27184631

RESUMO

BACKGROUND: Clozapine, an atypical antipsychotic medication, has been effectively used to treat refractory schizophrenia. However, the clinical usage of clozapine is limited due to a high incidence of neutropenia or agranulocytosis. We previously reported that clozapine protected dopaminergic neurons through inhibition of microglial activation. The purpose of this study was to explore the neuroprotective effects of clozapine metabolites clozapine N-oxide (CNO) and N-desmethylclozapine (NDC), as well as their propensity to cause neutropenia. METHODS: The primary midbrain neuron-glia culture was applied to detect the neuroprotective and anti-inflammatory effect of clozapine and its metabolites in lipopolysaccharide (LPS) and MPP(+)-induced toxicity. And the subsequent mechanism was demonstrated by gp91 (phox) mutant cell cultures as well as microgliosis cell lines. In vivo, to confirm the neuroprotective effect of clozapine and CNO, we measured the dopaminergic neuronal loss and rotarod motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-generated mouse Parkinson's disease (PD) model. The neutropenia or agranulocytosis of clozapine and its metabolites was illustrated by white blood cell count of the treated mice. RESULTS: We found that, in midbrain neuron-glia cultures, CNO and NDC were more potent than clozapine in protecting dopaminergic neurons against LPS and MPP(+)-induced toxicity. CNO and NDC-afforded neuroprotection was linked to inhibition of microglia-mediated neuroinflammation, as demonstrated by abolished neuroprotection in microglia-depleted cultures and their capacity of inhibiting LPS-induced release of proinflammatory factors from activated microglia. NADPH oxidase (NOX2) was subsequently recognized as the main target of CNO and NDC since genetic ablation of gp91 (phox) , the catalytic subunit of NOX2, abolished their neuroprotective effects. CNO and NDC inhibited NOX2 activation through interfering with the membrane translocation of the NOX2 cytosolic subunit, p47 (phox) . The neuroprotective effects of CNO were further verified in vivo as shown by attenuation of dopaminergic neurodegeneration, motor deficits, and reactive microgliosis in MPTP-generated mouse PD model. More importantly, unlike clozapine, CNO did not lower the white blood cell count. CONCLUSIONS: Altogether, our results show that clozapine metabolites elicited neuroprotection through inactivation of microglia by inhibiting NOX2. The robust neuroprotective effects and lack of neutropenia suggest that clozapine metabolites may be promising candidates for potential therapy for neurodegenerative diseases.


Assuntos
Clozapina/metabolismo , Neurônios Dopaminérgicos/enzimologia , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Microglia/enzimologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Fármacos Neuroprotetores/metabolismo , Animais , Antipsicóticos/metabolismo , Antipsicóticos/farmacologia , Clozapina/farmacologia , Técnicas de Cocultura , Neurônios Dopaminérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , NADPH Oxidase 2 , Fármacos Neuroprotetores/farmacologia , Gravidez , Ratos , Ratos Endogâmicos F344
9.
Mol Cancer ; 14: 92, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25928015

RESUMO

BACKGROUND: Irinotecan is a camptothecin analogue currently used in clinical practice to treat advanced colorectal cancer. However, acquired resistance mediated by the drug efflux pump ABCG2 is a recognized problem. We reported on a novel camptothecin analogue, FL118, which shows anticancer activity superior to irinotecan. In this study, we sought to investigate the potency of FL118 versus irinotecan or its active metabolite, SN-38, in both in vitro and in vivo models of human cancer with high ABCG2 activity. We also sought to assess the potency and ABCG2 affinity of several FL118 analogues with B-ring substitutions. METHODS: Colon and lung cancer cells with and without ABCG2 overexpression were treated with FL118 in the presence and absence of Ko143, an ABCG2-selective inhibitor, or alternatively by genetically modulating ABCG2 expression. Using two distinct in vivo human tumor animal models, we further assessed whether FL118 could extend time to progression in comparison with irinotecan. Lastly, we investigated a series of FL118 analogues with B-ring substitutions for ABCG2 sensitivity. RESULTS: Both pharmacological inhibition and genetic modulation of ABCG2 demonstrated that, in contrast to SN-38, FL118 was able to bypass ABCG2-mediated drug resistance. FL118 also extended time to progression in both in vivo models by more than 50% compared with irinotecan. Lastly, we observed that FL118 analogues with polar substitutions had higher affinity for ABCG2, suggesting that the nonpolar nature of FL118 plays a role in bypassing ABCG2-mediated resistance. CONCLUSIONS: Our results suggest that in contrast to SN-38 and topotecan, FL118 is a poor substrate for ABCG2 and can effectively overcome ABCG2-mediated drug resistance. Our findings expand the uniqueness of FL118 and support continued development of FL118 as an attractive therapeutic option for patients with drug-refractory cancers resulting from high expression of ABCG2.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Benzodioxóis/uso terapêutico , Camptotecina/análogos & derivados , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Indolizinas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Benzodioxóis/química , Benzodioxóis/farmacologia , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Inativação Gênica , Humanos , Indolizinas/química , Indolizinas/farmacologia , Irinotecano , Neoplasias Pulmonares/patologia , Camundongos SCID , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores da Topoisomerase/farmacologia , Inibidores da Topoisomerase/uso terapêutico , Resultado do Tratamento
10.
Expert Opin Ther Pat ; 34(1-2): 71-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573177

RESUMO

INTRODUCTION: The neuropeptide relaxin-3/RXFP3 system belongs to the relaxin/insulin superfamily and is involved in many important physiological processes, such as stress responses, appetite control, and motivation for reward. Although relaxin-3 is the endogenous agonist for RXFP3, it can also bind to and activate RXFP1 and RXFP4. Consequently, research has been focused on the development of RXFP3-specific peptides and small-molecule ligands to validate the relaxin-3/RXFP3 system as a novel drug target. AREAS COVERED: This review provides an overview of patents on the relaxin-3/RXFP3 system covering ligand development and pharmacological studies since 2003. Related patents and literature reports were obtained from established sources including SciFinder, Google Patents, and Espacenet for patents and SciFinder, PubMed, and Google Scholar for literature reports. EXPERT OPINION: There has been an increasing amount of patent activities around relaxin-3/RXFP3, highlighting the importance of this novel neuropeptide system for drug discovery. The development of relaxin-3 derived peptides and small-molecule modulators, as well as behavioral studies in rodents, have shown that the relaxin-3/RXFP3 system is a promising drug target for treating various metabolic and neuropsychiatric diseases including obesity, anxiety, and alcohol addiction.


Assuntos
Neuropeptídeos , Relaxina , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/metabolismo , Patentes como Assunto , Insulina/metabolismo , Receptores de Peptídeos/agonistas , Receptores de Peptídeos/metabolismo
11.
ACS Chem Neurosci ; 15(1): 169-192, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38086012

RESUMO

The development of synthetic agonists for the orphan receptor GPR88 has recently attracted significant interest, given the promise of GPR88 as a novel drug target for psychiatric and neurodegenerative disorders. Examination of structure-activity relationships of two known agonist scaffolds 2-PCCA and 2-AMPP, as well as the recently resolved cryo-EM structure of 2-PCCA-bound GPR88, led to the design of a new scaffold based on the "reversed amide" strategy of 2-AMPP. A series of novel (4-substituted-phenyl)acetamides were synthesized and assessed in cAMP accumulation assays as GPR88 agonists, which led to the discovery of several compounds with better or comparable potencies to 2-AMPP. Computational docking studies suggest that these novel GPR88 agonists bind to the same allosteric site of GPR88 that 2-PCCA occupies. Collectively, our findings provide structural insight and SAR requirement at the allosteric site of GPR88 and a new scaffold for further development of GPR88 allosteric agonists.


Assuntos
Acetamidas , Amidas , Receptores Acoplados a Proteínas G , Acetamidas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Relação Estrutura-Atividade
12.
J Med Chem ; 66(4): 2964-2978, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36749855

RESUMO

GPR88 is an orphan G protein-coupled receptor mainly expressed in the brain, whose endogenous ligand has not yet been identified. To elucidate GPR88 functions, our group has developed RTI-13951-33 (1b) as the first in vivo active GPR88 agonist, but its poor metabolic stability and moderate brain permeability remain to be further optimized. Here, we report the design, synthesis, and pharmacological characterization of a new series of RTI-13951-33 analogues with the aim of improving pharmacokinetic properties. As a result, we identified a highly potent GPR88 agonist RTI-122 (30a) (cAMP EC50 = 11 nM) with good metabolic stability (half-life of 5.8 h) and brain permeability (brain/plasma ratio of >1) in mice. Notably, RTI-122 was more effective than RTI-13951-33 in attenuating the binge-like alcohol drinking behavior in the drinking-in-the-dark paradigm. Collectively, our findings suggest that RTI-122 is a promising lead compound for drug discovery research of GPR88 agonists.


Assuntos
Desenho de Fármacos , Receptores Acoplados a Proteínas G , Animais , Camundongos , Encéfalo/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Estabilidade de Medicamentos , Consumo de Bebidas Alcoólicas/tratamento farmacológico
13.
Bioorg Med Chem Lett ; 22(4): 1705-8, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22260770

RESUMO

Early studies led to the identification of 11ß-aryl-4',5'-dihydrospiro[estra-4,9-diene-17ß,4'-oxazole] analogs with potent and more selective antiprogestational activity compared to antiglucocorticoid activity than mifepristone. In the present study, we replaced the 4'-dimethylaminophenyl group of mifepristone with the benzoxazol group to give 5a-d. We also prepared the 17ß-formamido analogs 6a,b using a new synthetic strategy via the intermediate epoxide 21. These compounds were evaluated for their antagonist hormonal properties using the T47D cell-based alkaline phosphatase assay and the A549 cell-based functional assay. Compound 5c showed potent antagonist activity at GR with better selectivity for GR versus PR than mifepristone and is a promising lead for further development.


Assuntos
Antagonistas de Hormônios/síntese química , Antagonistas de Hormônios/farmacologia , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Progesterona/antagonistas & inibidores , Esteroides/síntese química , Esteroides/farmacologia , Benzoxazóis/síntese química , Benzoxazóis/química , Benzoxazóis/farmacologia , Linhagem Celular Tumoral , Antagonistas de Hormônios/química , Humanos , Concentração Inibidora 50 , Mifepristona/química , Estrutura Molecular , Esteroides/química , Especificidade por Substrato/efeitos dos fármacos
14.
J Med Chem ; 65(11): 7959-7974, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35594150

RESUMO

The neuropeptide relaxin-3/RXFP3 system is involved in many important physiological processes such as stress responses, appetite control, and motivation for reward. To date, pharmacological studies of RXFP3 have been limited to peptide ligands. In this study, we report the discovery of the first small-molecule antagonists of RXFP3 through a high-throughput screening campaign. Focused structure-activity relationship studies of the hit compound resulted in RLX-33 (33) that was able to inhibit relaxin-3 activity in a battery of functional assays. RLX-33 is selective for RXFP3 over RXFP1 and RXFP4, two related members in the relaxin/insulin superfamily, and has favorable pharmacokinetic properties for behavioral assessment. When administered to rats intraperitoneally, RLX-33 blocked food intake induced by the RXFP3-selective agonist R3/I5. Collectively, our findings demonstrated that RLX-33 represents a promising antagonist scaffold for the development of drugs targeting the relaxin-3/RXFP3 system.


Assuntos
Relaxina , Animais , Insulina , Ligantes , Ratos , Receptores Acoplados a Proteínas G/química , Receptores de Peptídeos , Relaxina/farmacologia
15.
J Med Chem ; 64(16): 12397-12413, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34387471

RESUMO

The orphan receptor GPR88 has been implicated in a number of striatal-associated disorders, yet its endogenous ligand has not been discovered. We have previously reported that the amine functionality in the 2-AMPP-derived GPR88 agonists can be replaced with an amide (e.g., 4) without losing activity. Later, we have found that the amide can be replaced with a bioisosteric 1,3,4-oxadiazole with improved potency. Here, we report a further study of amide bioisosteric replacement with a variety of azoles containing three heteroatoms, followed by a focused structure-activity relationship study, leading to the discovery of a series of novel 1,4-disubstituted 1H-1,2,3-triazoles as GPR88 agonists. Collectively, our medicinal chemistry efforts have resulted in a potent, efficacious, and brain-penetrant GPR88 agonist 53 (cAMP EC50 = 14 nM), which is a suitable probe to study GPR88 functions in the brain.


Assuntos
Benzenoacetamidas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Triazóis/farmacologia , Animais , Benzenoacetamidas/síntese química , Benzenoacetamidas/farmacocinética , Barreira Hematoencefálica/metabolismo , Corpo Estriado/metabolismo , Desenho de Fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/farmacocinética , Oxidiazóis/farmacologia , Receptores Acoplados a Proteínas G/deficiência , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/farmacocinética
16.
J Med Chem ; 64(24): 17866-17886, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34855388

RESUMO

The central relaxin-3/RXFP3 system plays important roles in stress responses, feeding, and motivation for reward. However, exploration of its therapeutic applications has been hampered by the lack of small molecule ligands and the cross-activation of RXFP1 in the brain and RXFP4 in the periphery. Herein, we report the first structure-activity relationship studies of a series of novel nonpeptide amidinohydrazone-based agonists, which were characterized by RXFP3 functional and radioligand binding assays. Several potent and efficacious RXFP3 agonists (e.g., 10d) were identified with EC50 values <10 nM. These compounds also had high potency at RXFP4 but no agonist activity at RXFP1, demonstrating > 100-fold selectivity for RXFP3/4 over RXFP1. In vitro ADME and pharmacokinetic assessments revealed that the amidinohydrazone derivatives may have limited brain permeability. Collectively, our findings provide the basis for further optimization of lead compounds to develop a suitable agonist to probe RXFP3 functions in the brain.


Assuntos
Hidrazonas/farmacologia , Indóis/química , Receptores Acoplados a Proteínas G/agonistas , Receptores de Peptídeos/agonistas , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Modelos Moleculares , Ensaio Radioligante , Relação Estrutura-Atividade
17.
J Med Chem ; 64(6): 3006-3025, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33705126

RESUMO

Apelin receptor agonism improves symptoms of metabolic syndrome. However, endogenous apelin peptides have short half-lives, making their utility as potential drugs limited. Previously, we had identified a novel pyrazole-based agonist scaffold. Systematic modification of this scaffold was performed to produce compounds with improved ADME properties. Compound 13 with favorable agonist potency (cAMPi EC50 = 162 nM), human liver microsome stability (T1/2 = 62 min), and pharmacokinetic profile in rodents was identified. The compound was tested in a mouse model of diet-induced obesity (DIO) and metabolic syndrome for efficacy. Treatment with 13 led to significant weight loss, hypophagia, improved glucose utilization, reduced liver steatosis, and improvement of disease-associated biomarkers. In conclusion, a small-molecule agonist of the apelin receptor has been identified that is suitable for in vivo investigation of the apelinergic system in DIO and perhaps other diseases where this receptor has been implicated to play a role.


Assuntos
Receptores de Apelina/agonistas , Síndrome Metabólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Pirazóis/uso terapêutico , Animais , Receptores de Apelina/metabolismo , Humanos , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Pirazóis/química , Pirazóis/farmacocinética , Pirazóis/farmacologia , Redução de Peso/efeitos dos fármacos
18.
J Med Chem ; 63(23): 14989-15012, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33205975

RESUMO

Increasing evidence implicates the orphan G protein-coupled receptor 88 (GPR88) in a number of striatal-associated disorders. In this study, we report the design and synthesis of a series of novel (4-alkoxyphenyl)glycinamides (e.g., 31) and the corresponding 1,3,4-oxadiazole bioisosteres derived from the 2-AMPP scaffold (1) as GPR88 agonists. The 5-amino-1,3,4-oxadiazole derivatives (84, 88-90) had significantly improved potency and lower lipophilicity compared to 2-AMPP. Compound 84 had an EC50 of 59 nM in the GPR88 overexpressing cell-based cAMP assay. In addition, 84 had an EC50 of 942 nM in the [35S]GTPγS binding assay using mouse striatal membranes but was inactive in membranes from GPR88 knockout mice, even at a concentration of 100 µM. In vivo pharmacokinetic testing of 90 in rats revealed that the 5-amino-1,3,4-oxadiazole analogues may have limited brain permeability. Taken together, these results provide the basis for further optimization to develop a suitable agonist to probe GPR88 functions in the brain.


Assuntos
Glicina/análogos & derivados , Glicina/farmacologia , Oxidiazóis/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Desenho de Fármacos , Glicina/farmacocinética , Masculino , Camundongos Knockout , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/farmacocinética , Ratos Long-Evans , Solubilidade , Relação Estrutura-Atividade
19.
Bioorg Med Chem ; 17(14): 5126-32, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19523837

RESUMO

Early studies led to the identification of 3beta-(4-methoxyphenyl)tropane-2beta-carboxylic acid methyl ester (5) with high affinity at the DAT (IC(50)=6.5nM) and 5-HTT (K(i)=4.3nM), while having much less affinity at the NET (K(i)=1110nM). In the present study, we replaced the 4'-methoxy group of the 3beta-phenyl ring with a bioisosteric 4'-methylthio group to give 7a. We also synthesized a number of 3beta-(4-alkylthiophenyl)tropanes 7b-e, 3beta-(4-methylsulfinylphenyl) and 3beta-(4-methylsulfonylphenyl)tropane analogues 7f-h as well as the 3beta-(4-alkylthiophenyl)nortropane derivatives 8-11 to further characterize the structure-activity relationship of this type of compound for binding at monoamine transporters. With exception of the 4'-methylsulfonyl analogue 7h, all the tested compounds possessed high binding affinities at the 5-HTT. The K(i) values ranged from 0.19nM to 49nM. The 3beta-(4-methylthiophenyl)tropane 7a and its N-(3-fluoropropyl) analogue 9a and N-allyl analogue 10a are the most selective compounds for the 5-HTT over the NET (NET/5-HTT=314-364) in the series. However, none of the compounds showed selectivity similar to 5 for both the DAT and 5-HTT relative to the NET. This study provided useful SAR information for rational design of potent and selective monoamine transporter inhibitors.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Tropanos/química , Tropanos/farmacologia , Humanos , Estrutura Molecular , Nortropanos/síntese química , Nortropanos/química , Nortropanos/farmacologia , Ligação Proteica , Relação Estrutura-Atividade , Tropanos/síntese química
20.
Bioorg Med Chem ; 16(10): 5529-35, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18434164

RESUMO

A series of 2beta-alkynyl and 2beta-(1,2,3-triazol)substituted 3beta-(substituted phenyl)tropanes were synthesized and evaluated for affinities at dopamine, serotonin, and norepinephrine membrane transporters using competitive radioligand binding assays. All tested compounds were found to exhibit nanomolar or subnanomolar affinity for the dopamine transporter (DAT). One of the most potent and selective compounds in the series was 3beta-(4-chlorophenyl)-2beta-(4-nitrophenylethynyl)tropane (10c) that possessed an IC(50) value of 0.9nM at the DAT and K(i) values of 230nM and 620nM at the norepinephrine transporter (NET) and serotonin transporter (5-HTT), respectively.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Tropanos/síntese química , Tropanos/farmacologia , Ligação Competitiva/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Conformação Molecular , Ensaio Radioligante , Estereoisomerismo , Relação Estrutura-Atividade , Tropanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA