RESUMO
BACKGROUND: Recent genetic evidence supports a causal role for sarcopenia in osteoarthritis, which may be mediated by the occurrence of obesity or changes in circulating inflammatory protein levels. Here, we leveraged publicly available genome-wide association study data to investigate the intrinsic causal relationship between sarcopenia, obesity, circulating inflammatory protein levels, and osteoarthritis. METHODS: In this study, we used Mendelian randomization analyses to explore the causal relationship between sarcopenia phenotypes (Appendicular lean mass [ALM], Low hand-grip strength [LHG], and usual walking pace [UWP]) and osteoarthritis (Knee osteoarthritis [KOA], and Hip osteoarthritis [HOA]). Univariable Mendelian randomization (UVMR) analyses were performed using the inverse variance weighted (IVW) method, MR-Egger, weighted median method, simple mode, and weighted mode, with the IVW method being the primary analytical technique. Subsequently, the independent causal effects of sarcopenia phenotype on osteoarthritis were investigated using multivariate Mendelian randomization (MVMR) analysis. To further explore the mechanisms involved, obesity and circulating inflammatory proteins were introduced as the mediator variables, and a two-step Mendelian randomization analysis was used to explore the mediating effects of obesity and circulating inflammatory proteins between ALM and KOA as well as the mediating proportions. RESULTS: UVMR analysis showed a causal relationship between ALM, LHG, UWP and KOA [(OR = 1.151, 95% CI: 1.087-1.218, P = 1.19 × 10-6, PFDR = 7.14 × 10-6) (OR = 1.215, 95% CI: 1.004-1.470; P = 0.046, PFDR = 0.055) (OR = 0.503, 95% CI: 0.292-0.867; P = 0.013, PFDR = 0.027)], and a causal relationship between ALM, UWP and HOA [(OR = 1.181, 95% CI: 1.103-1.265, P = 2.05 × 10-6, PFDR = 6.15 × 10-6) (OR = 0.438, 95% CI: 0.226-0.849, P = 0.014, PFDR = 0.022)]. In the MVMR analyses adjusting for confounders (body mass index, insomnia, sedentary behavior, and bone density), causal relationships were observed between ALM, LHG, UWP and KOA [(ALM: OR = 1.323, 95%CI: 1.224- 1.431, P = 2.07 × 10-12), (LHG: OR = 1.161, 95%CI: 1.044- 1.292, P = 0.006), (UWP: OR = 0.511, 95%CI: 0.290- 0.899, P = 0.020)], and between ALM and HOA (ALM: OR = 1.245, 95%CI: 1.149- 1.348, P = 7.65 × 10-8). In a two-step MR analysis, obesity was identified to play a potential mediating role in ALM and KOA (proportion mediated: 5.9%). CONCLUSIONS: The results of this study suggest that decreased appendicular lean mass, grip strength, and walking speed increase the risk of KOA and decreased appendicular lean mass increases the risk of HOA in patients with sarcopenia in a European population. Obesity plays a mediator role in the occurrence of KOA due to appendicular lean body mass reduction.
Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Obesidade , Sarcopenia , Humanos , Análise da Randomização Mendeliana/métodos , Sarcopenia/epidemiologia , Sarcopenia/genética , Sarcopenia/diagnóstico , Obesidade/epidemiologia , Obesidade/genética , Obesidade/complicações , Estudo de Associação Genômica Ampla/métodos , Osteoartrite do Quadril/genética , Osteoartrite do Quadril/epidemiologia , Osteoartrite do Quadril/diagnóstico , Idoso , Força da Mão/fisiologia , Masculino , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/epidemiologia , Osteoartrite do Joelho/diagnóstico , Feminino , Osteoartrite/genética , Osteoartrite/epidemiologia , Análise Multivariada , FenótipoRESUMO
Chronic pancreatitis (CP) is characterized by progressive fibrosis and exocrine dysregulation, which have long been considered irreversible. As a peripheral oscillator, the pancreas harbors autonomous and self-sustained timekeeping systems in both its endocrine and exocrine compartments, although the role of the latter remains poorly understood. By using different models of CP established in mice with dysfunctional pancreatic clocks, we found that the local clock played an important role in CP pathology, and genetic or external disruption of the pancreatic clock exacerbated fibrogenesis and exocrine insufficiency. Mechanistically, an impaired retinoic acid receptor-related orphan receptor A (Rora)/nuclear receptor subfamily 1, group D, member 1 (Nr1d1)/aryl hydrocarbon receptor nuclear translocator-like (Arntl or Bmal1) loop, called the circadian stabilizing loop, resulted in the deficiency of pancreatic Bmal1, which was responsible for controlling the fibrogenic properties of pancreatic stellate cells (PSCs) and for rewiring the function of acinar cells in a clock-TGF signaling-IL-11/IL-11RA axis-dependent manner. During PSC activation, the antagonistic interaction between Nr1d1 and Rora was unbalanced in response to the loss of cytoplasmic retinoid-containing lipid droplets. Patients with CP also exhibited reduced production of endogenous melatonin. Enhancing the clock through pharmacological restoration of the circadian stabilizing loop using a combination of melatonin and the Rora agonist SR1078 attenuated intrapancreatic pathological changes in mouse models of CP. Collectively, this study identified a protective role of the pancreatic clock against pancreatic fibrosis and exocrine dysfunction. Pancreatic clock-targeted therapy may represent a potential strategy to treat CP.