Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 595
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(50): e2220496120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064514

RESUMO

Massive GGGGCC (G4C2) repeat expansion in C9orf72 and the resulting loss of C9orf72 function are the key features of ~50% of inherited amyotrophic lateral sclerosis and frontotemporal dementia cases. However, the biological function of C9orf72 remains unclear. We previously found that C9orf72 can form a stable GTPase activating protein (GAP) complex with SMCR8 (Smith-Magenis chromosome region 8). Herein, we report that the C9orf72-SMCR8 complex is a major negative regulator of primary ciliogenesis, abnormalities in which lead to ciliopathies. Mechanistically, the C9orf72-SMCR8 complex suppresses the primary cilium as a RAB8A GAP. Moreover, based on biochemical analysis, we found that C9orf72 is the RAB8A binding subunit and that SMCR8 is the GAP subunit in the complex. We further found that the C9orf72-SMCR8 complex suppressed the primary cilium in multiple tissues from mice, including but not limited to the brain, kidney, and spleen. Importantly, cells with C9orf72 or SMCR8 knocked out were more sensitive to hedgehog signaling. These results reveal the unexpected impact of C9orf72 on primary ciliogenesis and elucidate the pathogenesis of diseases caused by the loss of C9orf72 function.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Cílios , Demência Frontotemporal , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Cílios/metabolismo , Expansão das Repetições de DNA , Demência Frontotemporal/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Células HEK293
2.
Hepatology ; 79(1): 167-182, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37368993

RESUMO

BACKGROUND AND AIMS: Chronic hepatitis B (CHB) is caused by HBV infection and affects the lives of millions of people worldwide by causing liver inflammation, cirrhosis, and liver cancer. Interferon-alpha (IFN-α) therapy is a conventional immunotherapy that has been widely used in CHB treatment and achieved promising therapeutic outcomes by activating viral sensors and interferon-stimulated genes (ISGs) suppressed by HBV. However, the longitudinal landscape of immune cells of CHB patients and the effect of IFN-α on the immune system are not fully understood. APPROACH AND RESULTS: Here, we applied single-cell RNA sequencing (scRNA-seq) to delineate the transcriptomic landscape of peripheral immune cells in CHB patients before and after PegIFN-α therapy. Notably, we identified three CHB-specific cell subsets, pro-inflammatory (Pro-infla) CD14+ monocytes, Pro-infla CD16+ monocytes and IFNG+ CX3CR1- NK cells, which highly expressed proinflammatory genes and positively correlated with HBsAg. Furthermore, PegIFN-α treatment attenuated percentages of hyperactivated monocytes, increased ratios of long-lived naive/memory T cells and enhanced effector T cell cytotoxicity. Finally, PegIFN-α treatment switched the transcriptional profiles of entire immune cells from TNF-driven to IFN-α-driven pattern and enhanced innate antiviral response, including virus sensing and antigen presentation. CONCLUSIONS: Collectively, our study expands the understanding of the pathological characteristics of CHB and the immunoregulatory roles of PegIFN-α, which provides a new powerful reference for the clinical diagnosis and treatment of CHB.


Assuntos
Hepatite B Crônica , Humanos , Antivirais , Interferon-alfa , Transcriptoma , Análise de Sequência de RNA , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B , Antígenos E da Hepatite B , DNA Viral
3.
Hum Genomics ; 18(1): 60, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38858783

RESUMO

BACKGROUND: Epidemiological studies have revealed a significant association between impaired kidney function and certain mental disorders, particularly bipolar disorder (BIP) and major depressive disorder (MDD). However, the evidence regarding shared genetics and causality is limited due to residual confounding and reverse causation. METHODS: In this study, we conducted a large-scale genome-wide cross-trait association study to investigate the genetic overlap between 5 kidney function biomarkers (eGFRcrea, eGFRcys, blood urea nitrogen (BUN), serum urate, and UACR) and 2 mental disorders (MDD, BIP). Summary-level data of European ancestry were extracted from UK Biobank, Chronic Kidney Disease Genetics Consortium, and Psychiatric Genomics Consortium. RESULTS: Using LD score regression, we found moderate but significant genetic correlations between kidney function biomarker traits on BIP and MDD. Cross-trait meta-analysis identified 1 to 19 independent significant loci that were found shared among 10 pairs of 5 kidney function biomarkers traits and 2 mental disorders. Among them, 3 novel genes: SUFU, IBSP, and PTPRJ, were also identified in transcriptome-wide association study analysis (TWAS), most of which were observed in the nervous and digestive systems (FDR < 0.05). Pathway analysis showed the immune system could play a role between kidney function biomarkers and mental disorders. Bidirectional mendelian randomization analysis suggested a potential causal relationship of kidney function biomarkers on BIP and MDD. CONCLUSIONS: In conclusion, the study demonstrated that both BIP and MDD shared genetic architecture with kidney function biomarkers, providing new insights into their genetic architectures and suggesting that larger GWASs are warranted.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Estudo de Associação Genômica Ampla , Humanos , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/patologia , Transtorno Bipolar/genética , Transtorno Bipolar/patologia , Polimorfismo de Nucleotídeo Único/genética , Rim/fisiopatologia , Rim/patologia , Predisposição Genética para Doença , Biomarcadores/sangue , Taxa de Filtração Glomerular/genética , Locos de Características Quantitativas/genética , Ácido Úrico/sangue
4.
PLoS Biol ; 20(11): e3001856, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36318514

RESUMO

Feingold syndrome type 1, caused by loss-of-function of MYCN, is characterized by varied phenotypes including esophageal and duodenal atresia. However, no adequate model exists for studying the syndrome's pathological or molecular mechanisms, nor is there a treatment strategy. Here, we developed a zebrafish Feingold syndrome type 1 model with nonfunctional mycn, which had severe intestinal atresia. Single-cell RNA-seq identified a subcluster of intestinal cells that were highly sensitive to Mycn, and impaired cell proliferation decreased the overall number of intestinal cells in the mycn mutant fish. Bulk RNA-seq and metabolomic analysis showed that expression of ribosomal genes was down-regulated and that amino acid metabolism was abnormal. Northern blot and ribosomal profiling analysis showed abnormal rRNA processing and decreases in free 40S, 60S, and 80S ribosome particles, which led to impaired translation in the mutant. Besides, both Ribo-seq and western blot analysis showed that mTOR pathway was impaired in mycn mutant, and blocking mTOR pathway by rapamycin treatment can mimic the intestinal defect, and both L-leucine and Rheb, which can elevate translation via activating TOR pathway, could rescue the intestinal phenotype of mycn mutant. In summary, by this zebrafish Feingold syndrome type 1 model, we found that disturbance of ribosomal biogenesis and blockage of protein synthesis during development are primary causes of the intestinal defect in Feingold syndrome type 1. Importantly, our work suggests that leucine supplementation may be a feasible and easy treatment option for this disease.


Assuntos
Microcefalia , Peixe-Zebra , Animais , Proteína Proto-Oncogênica N-Myc , Peixe-Zebra/metabolismo , Microcefalia/genética , Serina-Treonina Quinases TOR/metabolismo , Leucina
5.
J Pathol ; 263(2): 203-216, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38551071

RESUMO

Urothelial damage and barrier dysfunction emerge as the foremost mechanisms in Hunner-type interstitial cystitis/bladder pain syndrome (HIC). Although treatments aimed at urothelial regeneration and repair have been employed, their therapeutic effectiveness remains limited due to the inadequate understanding of specific cell types involved in damage and the lack of specific molecular targets within these mechanisms. Therefore, we harnessed single-cell RNA sequencing to elucidate the heterogeneity and developmental trajectory of urothelial cells within HIC bladders. Through reclustering, we identified eight distinct clusters of urothelial cells. There was a significant reduction in UPK3A+ umbrella cells and a simultaneous increase in progenitor-like pluripotent cells (PPCs) within the HIC bladder. Pseudotime analysis of the urothelial cells in the HIC bladder revealed that cells faced challenges in differentiating into UPK3A+ umbrella cells, while PPCs exhibited substantial proliferation to compensate for the loss of UPK3A+ umbrella cells. The urothelium in HIC remains unrepaired, despite the substantial proliferation of PPCs. Thus, we propose that inhibiting the pivotal signaling pathways responsible for the injury to UPK3A+ umbrella cells is paramount for restoring the urothelial barrier and alleviating lower urinary tract symptoms in HIC patients. Subsequently, we identified key molecular pathways (TLR3 and NR2F6) associated with the injury of UPK3A+ umbrella cells in HIC urothelium. Finally, we conducted in vitro and in vivo experiments to confirm the potential of the TLR3-NR2F6 axis as a promising therapeutic target for HIC. These findings hold the potential to inhibit urothelial injury, providing promising clues for early diagnosis and functional bladder self-repair strategies for HIC patients. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Cistite Intersticial , Receptor 3 Toll-Like , Urotélio , Animais , Feminino , Humanos , Camundongos , Diferenciação Celular , Proliferação de Células , Cistite Intersticial/patologia , Cistite Intersticial/metabolismo , Cistite Intersticial/genética , Camundongos Endogâmicos C57BL , Transdução de Sinais , Análise de Célula Única , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Bexiga Urinária/patologia , Bexiga Urinária/metabolismo , Urotélio/patologia , Urotélio/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(46): e2207201119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343244

RESUMO

The transcription variation, leading to various forms of transcripts and protein diversity, remains largely unexplored in triple-negative breast cancers (TNBCs). Here, we presented a comprehensive analysis of RNA splicing in breast cancer to illustrate the biological function and clinical implications of tumor-specific transcripts (TSTs) arising from these splicing junctions. Aberrant RNA splicing or TSTs were frequently harbored in TNBC and were correlated with a poor outcome. We discovered a tumor-specific splicing variant of macrophage receptor with collagenous structure-TST (MARCO-TST), which was distinguished from myeloid cell-specific wild-type MARCO. MARCO-TST expression was associated with poor outcomes in TNBC patients and could promote tumor progression in vitro and in vivo. Mechanically, MARCO-TST interacted with PLOD2 and enhanced the stability of HIF-1α, which resulted in the metabolic dysregulation of TNBC to form a hypoxic tumor microenvironment. MARCO-TST was initiated from a de novo alternative transcription initiation site that was activated by a superenhancer. Tumors with MARCO-TST expression conferred greater sensitivity to bromodomain and extraterminal protein inhibitors. This treatment strategy was further validated in patient-derived organoids. In conclusion, our results revealed the transcription variation landscape of TNBC, highlighting MARCO-TST as a crucial oncogenic transcript and therapeutic target.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Carcinogênese/genética , Splicing de RNA , Proliferação de Células , Microambiente Tumoral
7.
Lancet Oncol ; 25(2): 184-197, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211606

RESUMO

BACKGROUND: Triple-negative breast cancers display heterogeneity in molecular drivers and immune traits. We previously classified triple-negative breast cancers into four subtypes: luminal androgen receptor (LAR), immunomodulatory, basal-like immune-suppressed (BLIS), and mesenchymal-like (MES). Here, we aimed to evaluate the efficacy and safety of subtyping-based therapy in the first-line treatment of triple-negative breast cancer. METHODS: FUTURE-SUPER is an ongoing, open-label, randomised, controlled phase 2 trial being conducted at Fudan University Shanghai Cancer Center (FUSCC), Shanghai, China. Eligible participants were females aged 18-70 years, with an Eastern Cooperative Oncology Group performance status of 0-1, and histologically confirmed, untreated metastatic or recurrent triple-negative breast cancer. After categorising participants into five cohorts according to molecular subtype and genomic biomarkers, participants were randomly assigned (1:1) with a block size of 4, stratified by subtype, to receive, in 28-day cycles, nab-paclitaxel (100 mg/m2, intravenously on days 1, 8, and 15) alone (control group) or with a subtyping-based regimen (subtyping-based group): pyrotinib (400 mg orally daily) for the LAR-HER2mut subtype, everolimus (10 mg orally daily) for the LAR-PI3K/AKTmut and MES-PI3K/AKTmut subtypes, camrelizumab (200 mg intravenously on days 1 and 15) and famitinib (20 mg orally daily) for the immunomodulatory subtype, and bevacizumab (10 mg/kg intravenously on days 1 and 15) for the BLIS/MES-PI3K/AKTWT subtype. The primary endpoint was investigator-assessed progression-free survival for the pooled subtyping-based group versus the control group in the intention-to-treat population (all randomly assigned participants). Safety was analysed in all patients with safety records who received at least one dose of study drug. This study is registered with ClinicalTrials.gov (NCT04395989). FINDINGS: Between July 28, 2020, and Oct 16, 2022, 139 female participants were enrolled and randomly assigned to the subtyping-based group (n=69) or control group (n=70). At the data cutoff (May 31, 2023), the median follow-up was 22·5 months (IQR 15·2-29·0). Median progression-free survival was significantly longer in the pooled subtyping-based group (11·3 months [95% CI 8·6-15·2]) than in the control group (5·8 months [4·0-6·7]; hazard ratio 0·44 [95% CI 0·30-0·65]; p<0·0001). The most common grade 3-4 treatment-related adverse events were neutropenia (21 [30%] of 69 in the pooled subtyping-based group vs 16 [23%] of 70 in the control group), anaemia (five [7%] vs none), and increased alanine aminotransferase (four [6%] vs one [1%]). Treatment-related serious adverse events were reported for seven (10%) of 69 patients in the subtyping-based group and none in the control group. No treatment-related deaths were reported in either group. INTERPRETATION: These findings highlight the potential clinical benefits of using molecular subtype-based treatment optimisation in patients with triple-negative breast cancer, suggesting a path for further clinical investigation. Phase 3 randomised clinical trials assessing the efficacy of subtyping-based regimens are now underway. FUNDING: National Natural Science Foundation of China, Natural Science Foundation of Shanghai, Shanghai Hospital Development Center, and Jiangsu Hengrui Pharmaceuticals. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , China , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
8.
Gastrointest Endosc ; 99(5): 667-675.e1, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38184117

RESUMO

BACKGROUND AND AIMS: The aim of this study was to determine if utilization of artificial intelligence (AI) in the course of endoscopic procedures can significantly diminish both the adenoma miss rate (AMR) and the polyp miss rate (PMR) compared with standard endoscopy. METHODS: We performed an extensive search of various databases, encompassing PubMed, Embase, Cochrane Library, Web of Science, and Scopus, until June 2023. The search terms used were artificial intelligence, machine learning, deep learning, transfer machine learning, computer-assisted diagnosis, convolutional neural networks, gastrointestinal (GI) endoscopy, endoscopic image analysis, polyp, adenoma, and neoplasms. The main study aim was to explore the impact of AI on the AMR, PMR, and sessile serrated lesion miss rate. RESULTS: A total of 7 randomized controlled trials were included in this meta-analysis. Pooled AMR was markedly lower in the AI group versus the non-AI group (pooled relative risk [RR], .46; 95% confidence interval [CI], .36-.59; P < .001). PMR was also reduced in the AI group in contrast with the non-AI control (pooled RR, .43; 95% CI, .27-.69; P < .001). The results showed that AI decreased the miss rate of sessile serrated lesions (pooled RR, .43; 95% CI, .20 to .92; P < .05) and diminutive adenomas (pooled RR, .49; 95% CI, .26-.93) during endoscopy, but no significant effect was observed for advanced adenomas (pooled RR, .48; 95% CI, .17-1.37; P = .17). The average number of polyps (Hedges' g = -.486; 95% CI, -.697 to -.274; P = .000) and adenomas (Hedges' g = -.312; 95% CI, -.551 to -.074; P = .01) detected during the second procedure also favored AI. However, AI implementation did not lead to a prolonged withdrawal time (P > .05). CONCLUSIONS: This meta-analysis suggests that AI technology leads to significant reduction of miss rates for GI adenomas, polyps, and sessile serrated lesions during endoscopic surveillance. These results underscore the potential of AI to improve the accuracy and efficiency of GI endoscopic procedures.

9.
Inorg Chem ; 63(4): 1879-1887, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38240218

RESUMO

The development of efficient fluorescent probes and adsorbents for detecting and removing Cu2+, which pose potential environmental and health risks, is a highly active area of research. However, achieving simultaneously improved fluorescence detection efficiency and enhanced adsorption capacity in a single porous probe remains a significant challenge. In this study, we successfully synthesized a two-dimensional imine-based TAP-COF using 2,4,6-triformylphloroglucinol and tri(4-aminophenyl)amine as raw materials. TAP-COF exhibited excellent properties, including a large specific surface area of 685.65 m2·g-1, exceptional thermal stability (>440 °C), chemical stability, temporal stability, and recyclability. Fluorescence testing revealed that TAP-COF exhibited remarkable specificity and high sensitivity for detecting Cu2+. The fluorescence mechanism, in which the excited state intramolecular proton transfer was impeded by the interaction of Cu2+ with C═O and C-N bonds on TAP-COF upon the addition of Cu2+, was further elucidated through experimental and theoretical methods. Furthermore, the adsorption capacity of TAP-COF toward Cu2+ was investigated, confirming the excellence of TAP-COF as a fluorescent probe and adsorbent for the specific detection and removal of Cu2+. This work holds significant implications for improving environmental and human health concerns associated with Cu2+ contamination.

10.
Ecotoxicol Environ Saf ; 269: 115775, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070413

RESUMO

Geosmin is an environmental pollutant that causes off-flavor in water and aquatic products. The high occurrence of geosmin contamination in aquatic systems and aquaculture raises public awareness, however, few studies have investigated the response pathways of geosmin stress on freshwater fish. In this research, grass carp were exposed to 50 µg/L geosmin for 96 h, liver tissue was sequenced and validated using real-time qPCR. In total of 528 up-regulated genes and 488 down-regulated genes were observed, includes cytochrome P450 and uridine diphosphate (UDP)-glucuronosyltransferase related genes. KEGG analysis showed that chemical carcinogenesis-DNA adducts, metabolism of xenobiotics by cytochrome P450, drug metabolism-cytochrome P450 pathway was enriched. Common genes from the target genes of microRNAs and differential expression genes are enriched in metabolism of xenobiotics cytochrome P450 pathway. Two miRNAs (dre-miR-146a and miR-212-3p) down regulated their target genes (LOC127510138 and adh5, respectively) which are enriched cytochrome P450 related pathway. The results present that geosmin is genetoxic to grass carp and indicate that cytochrome P450 system and UDP-glucuronosyltransferase play essential roles in biotransformation of geosmin. MicroRNAs regulate the biotransformation of geosmin by targeting specific genes, which contributes to the development of strategies to manage its negative impacts in both natural and artificial environments.


Assuntos
Carpas , Doenças dos Peixes , MicroRNAs , Naftóis , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Carpas/genética , Carpas/metabolismo , RNA Mensageiro , Sistema Enzimático do Citocromo P-450/genética , Água Doce , Glucuronosiltransferase/genética , Difosfato de Uridina , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
11.
Pak J Med Sci ; 40(3Part-II): 382-387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356839

RESUMO

Objective: To determine the efficacy of extracorporeal shock wave (ESW) combined with autologous platelet-rich plasma (PRP) therapy on knee osteoarthritis (KOA) with meniscus injury in terms of pain relief, functional outcome and complications. Methods: This is a retrospective observational study. Clinical data of 144 patients with KOA accompanied by medial meniscus injury, who received treatment in Jilin Provincial People's Hospital from March 2021 to December 2022, were retrospectively evaluated. A total of 128 patients (81 males and 47 females) were finally included in the study after screening. Of them, 45 patients received PRP treatment (PRP-group), 43 patients received ESW treatment (ESW-group), and 40 patients received ESW combined with PRP treatment (Combined-group). The relief of knee joint pain and functional improvement among three groups of patients were compared. Results: After treatment, visual analogue scale (VAS), Lequesne, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores of patients in the Combined-group were significantly lower than those in the other two groups (p<0.05). Combined ESW-PRP treatment was associated with significantly greater joint range of motion of patients compared to ESW and PRP alone (p<0.05). The total incidence of related complications in the Combined-group was lower compared to the other two groups (p<0.05). Conclusions: Compared with PRP or ESW treatment alone, ESW combined with PRP for KOA with meniscus injury can better alleviate pain, achieve faster functional recovery, and significantly reduce complications.

12.
Zhongguo Zhong Yao Za Zhi ; 49(1): 208-215, 2024 Jan.
Artigo em Zh | MEDLINE | ID: mdl-38403353

RESUMO

This study aimed to investigate the regulatory effects of Zuogui Jiangtang Jieyu Formula(ZJJ) on the intestinal flora, short chain fatty acids(SCFAs), and neuroinflammation in rats with diabetes mellitus complicated depression(DD). The DD model was established in rats and model rats were randomly divided into a model group, a positive drug(metformin + fluoxetine) group, a ZJJ low-dose group, and a ZJJ high-dose group, with eight rats in each group. Another eight rats were assigned to the blank group. Subsequently, depressive-like behavior test was conducted on the rats, and cerebrospinal fluid samples were collected to measure pro-inflammatory cytokines [interleukin-1ß(IL-1ß), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α)]. Blood serum samples were collected to measure proteins related to the hypothalamic-pituitary-adrenal axis(HPA axis), including corticotropin-releasing hormone(CRH), adrenocorticotropic hormone(ACTH), and cortisol(CORT), as well as glucose metabolism. Gut contents were collected from each group for 16S rRNA sequencing analysis of intestinal flora and SCFAs sequencing. The results indicated that ZJJ not only improved glucose metabolism in DD rats(P<0.01) but also alleviated depressive-like behavior(P<0.05) and HPA axis hyperactivity(P<0.05 or P<0.01). Besides, it also improved the neuroinflammatory response in the brain, as evidenced by a significant reduction in pro-inflammatory cytokines in cerebrospinal fluid(P<0.05 or P<0.01). Additionally, ZJJ improved the intestinal flora, causing the intestinal flora in DD rats to resemble that of the blank group, characterized by an increased Firmicutes abundance. ZJJ significantly increased the levels of SCFAs(acetic acid, butyric acid, valeric acid, and isovaleric acid)(P<0.01). Therefore, it is deduced that ZJJ can effectively ameliorate intestinal flora dysbiosis, regulate SCFAs, and thereby improve both glucose metabolism disturbances and depressive-like behavior in DD.


Assuntos
Diabetes Mellitus , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Ratos , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Depressão/tratamento farmacológico , RNA Ribossômico 16S , Sistema Hipófise-Suprarrenal/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Citocinas/genética , Citocinas/metabolismo , Glucose/metabolismo , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia
13.
J Am Chem Soc ; 145(23): 12717-12725, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37268602

RESUMO

Enhancing the catalytic activity of Ru metal in the hydrogen oxidation reaction (HOR) potential range, improving the insufficient activity of Ru caused by its oxophilicity, is of great significance for reducing the cost of anion exchange membrane fuel cells (AEMFCs). Here, we use Ru grown on Au@Pd as a model system to understand the underlying mechanism for activity improvement by combining direct in situ surface-enhanced Raman spectroscopy (SERS) evidence of the catalytic reaction intermediate (OHad) with in situ X-ray diffraction (XRD), electrochemical characterization, as well as DFT calculations. The results showed that the Au@Pd@Ru nanocatalyst utilizes the hydrogen storage capacity of the Pd interlayer to "temporarily" store the activated hydrogen enriched at the interface, which spontaneously overflows at the "hydrogen-deficient interface" to react with OHad adsorbed on Ru. It is the essential reason for the enhanced catalytic activity of Ru at anodic potential. This work deepens our understanding of the HOR mechanism and provides new ideas for the rational design of advanced electrocatalysts.

14.
J Am Chem Soc ; 145(6): 3682-3695, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36727591

RESUMO

With easily accessible and operator-friendly reagents, shelf-stable ortho-methoxycarbonylethynylphenyl thioglycosides were efficiently prepared. Based on these MCEPT glycoside donors, a novel glycosylation protocol featuring mild and catalytic promotion conditions with Au(I) or Cu(II) complexes, expanded substrate scope encompassing challenging donors and acceptors and clinically used pharmaceuticals, and versatility in various strategies for highly efficient synthesis of glycosides has been established. The practicality of the MCEPT glycosylation protocol was fully exhibited by highly efficient and scalable synthesis of surface polysaccharide subunits of Acinetobacter baumannii via latent-active, reagent-controlled divergent orthogonal one-pot and orthogonal one-pot strategies. The underlying reaction mechanism was investigated systematically through control reactions, leading to the isolation and characterization of the vital catalyst species in MCEPT glycosylation, the benzothiophen-3-yl-gold(I) complex. Based on the results obtained both from control reactions and from studies leading to the glycosylation protocol establishment, an operative mechanism was proposed and the effect of the vital catalyst species reactivity on the results of metal-catalyzed alkyne-containing donor-involved glycosylation was disclosed. Moreover, the mechanism for C-glycosylation side product formation from ortho-(substituted)ethynylphenyl thioglycoside donors with electron-donating substituents was also illuminated.

15.
Mol Ecol ; 32(3): 613-627, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36355347

RESUMO

Invasive species can successfully and rapidly colonize new niches and expand ranges via founder effects and enhanced tolerance towards environmental stresses. However, the underpinning molecular mechanisms (i.e., gene expression changes) facilitating rapid adaptation to harsh environments are still poorly understood. The red seaweed Gracilaria vermiculophylla, which is native to the northwest Pacific but invaded North American and European coastal habitats over the last 100 years, provides an excellent model to examine whether enhanced tolerance at the level of gene expression contributed to its invasion success. We collected G. vermiculophylla from its native range in Japan and from two non-native regions along the Delmarva Peninsula (Eastern United States) and in Germany. Thalli were reared in a common garden for 4 months at which time we performed comparative transcriptome (mRNA) and microRNA (miRNA) sequencing. MRNA-expression profiling identified 59 genes that were differently expressed between native and non-native thalli. Of these genes, most were involved in metabolic pathways, including photosynthesis, abiotic stress, and biosynthesis of products and hormones in all four non-native sites. MiRNA-based target-gene correlation analysis in native/non-native pairs revealed that some target genes are positively or negatively regulated via epigenetic mechanisms. Importantly, these genes are mostly associated with metabolism and defence capability (e.g., metal transporter Nramp5, senescence-associated protein, cell wall-associated hydrolase, ycf68 protein and cytochrome P450-like TBP). Thus, our gene expression results indicate that resource reallocation to metabolic processes is most likely a predominant mechanism contributing to the range-wide persistence and adaptation of G. vermiculophylla in the invaded range. This study, therefore, provides molecular insight into the speed and nature of invasion-mediated rapid adaption.


Assuntos
Gracilaria , Rodófitas , Alga Marinha , Alga Marinha/genética , Gracilaria/genética , Ecossistema , Expressão Gênica
16.
BMC Cancer ; 23(1): 298, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005579

RESUMO

INTRODUCTION: We have previously reported that Toll-like receptor 3 (TLR3) acts as a suppressor gene for breast cancer initiation and progression. In this study, we evaluated the role of TLR3 in breast cancer using our original Fudan University Shanghai Cancer Center (FUSCC) datasets and breast cancer tissue microarrays. METHODS: Using FUSCC multiomics datasets on triple- negative breast cancer (TNBC), we compared the mRNA expression of TLR3 in TNBC tissue and the adjacent normal tissue. A Kaplan-Meier plotter was performed to investigate the expression of TLR3 on prognosis in the FUSCC TNBC cohort. We performed immunohistochemical staining to analyze TLR3 protein expression in the TNBC tissue microarrays. Furthermore, bioinformatics analysis was performed using the Cancer Genome Atlas (TCGA) data to verify the results of our FUSCC study. The relationship between TLR3 and clinicopathological features was analyzed with logistic regression and the Wilcoxon signed-rank test. The association between clinical characteristics and overall survival in TCGA patients was assessed using the Kaplan-Meier method and Cox regression analysis. Gene set enrichment analysis (GSEA) was performed to identify signaling pathways that are differentially activated in breast cancer. RESULTS: The mRNA expression of TLR3 was lower in TNBC tissue than in the adjacent normal tissue in the FUSCC datasets. The TLR3 had high expression in immunomodulatory (IM) and mesenchymal-like (MES) subtypes and low expression in luminal androgen receptor (LAR) and basal-like immune-suppressed (BLIS) subtypes. High expression of TLR3 in TNBC predicted better prognosis in the FUSCC TNBC cohort. Immunohistochemical staining of the tissue microarrays showed that TLR3 had lower expression in breast cancer tissues than in the adject normal tissues. Furthermore, the TLR3 expression was positively associated with B cell, CD4 + T cells, CD8 + T cells, neutrophils, macrophages, and myeloid dendritic cells. Bioinformatic analysis using high-throughput RNA-sequencing data from the TCGA demonstrated that the reduced expression of TLR3 in breast cancer was associated with advanced clinicopathological characteristics, survival time, and poor prognosis. CONCLUSIONS: TLR3 has low expression in TNBC tissue. High expression of TLR3 in triple-negative breast cancer predicts better prognosis. TLR3 expression may be a potential prognostic molecular marker of poor survival in breast cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Receptor 3 Toll-Like/genética , Universidades , Biomarcadores Tumorais/metabolismo , China/epidemiologia , Prognóstico , RNA Mensageiro/genética
17.
FASEB J ; 36(6): e22340, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524736

RESUMO

The prevention role of Lactiplantibacillus plantarum against the formation of kidney stones has been increasingly recognized; its mechanism, however, has mainly been focused on inhibiting the inflammation in the colon in the gastrointestinal (GI) system, and the intestinal metabolites from microflora have not been revealed fully with regarding to the stone formation. In this study, we investigated the effect of L. plantarum J-15 on kidney stone formation in renal calcium oxalate (CaOx) rats induced by ethylene glycol and monitored the changes of intestinal microflora and their metabolites detected by 16S rRNA sequencing and widely targeted analysis, followed by the evaluation of the intestinal barrier function and inflammation levels in the colon, blood and kidney. The results showed that L. plantarum J-15 effectively reduced renal crystallization and urinary oxalic acid. Ten microbial genera, including anti-inflammatory and SCFAs-related Faecalibaculum, were enriched in the J-15 treatment group. There are 136 metabolites from 11 categories significantly different in the J-15 supplementation group compared with CaOx model rats, most of which were enriched in the amino acid metabolic and secondary bile acid pathways. The expression of intestinal tight junction protein Occludin and the concentration of pro-inflammatory cytokines and prostaglandin were decreased in the intestine, which further reduced the translocated lipopolysaccharide and inflammation levels in the blood upon J-15 treatment. Thus, the inflammation and injury in the kidney might be alleviated by downregulating TLR4/NF-κB/COX-2 signaling pathway. It suggested that L. plantarum J-15 might reduce kidney stone formation by restoring intestinal microflora and metabolic disorder, protecting intestinal barrier function, and alleviating inflammation. This finding provides new insights into the therapies for renal stones.


Assuntos
Microbioma Gastrointestinal , Cálculos Renais , Animais , Oxalato de Cálcio/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Cálculos Renais/induzido quimicamente , Cálculos Renais/prevenção & controle , Lactobacillaceae/genética , Lactobacillaceae/metabolismo , Masculino , RNA Ribossômico 16S/genética , Ratos
18.
World J Urol ; 41(10): 2659-2669, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37566142

RESUMO

OBJECTIVE: In recent years, the minimally invasive surgical treatment methods of ureteropelvic junctional obstruction (UPJO) have been diverse, but its approach and choice of surgical method are controversial. This network meta-analysis (NMA) aimed to compare the safety and effectiveness of minimally invasive surgeries for UPJO, which included robotic or laparoscopic pyeloplasty, via the retroperitoneal or transperitoneal approach. METHODS: We searched relevant RCTs in PubMed, Embase, Web of Science, the Cochrane Library, and CNKI. To assess the results of operative time, complications and success rate, pairwise, and NMA were carried out. The models for analyses were performed by Revman 5.3, Addis V1.16.8 and R software. RESULTS: A total of 6 RCTs were included in this study involving four types of surgeries: transperitoneal laparoscopic pyeloplasty (T-LP), retroperitoneal laparoscopic pyeloplasty (R-LP), robot-assisted transperitoneal pyeloplasty (T-RALP), and robot-assisted retroperitoneal pyeloplasty (R-RALP). This study consisted of 381 patients overall. T-RALP had a quicker operational duration (SMD = 1.67, 95% CI 0.27-3.07, P = 0.02) than T-LP. According to the NMA's consistency model, T-RALP improved the surgical success rate more than T-LP (RR = 6303.19, CI 1.28 to 1.47 × 1011). Ranking probabilities indicated that RALP could be the better option than LP and retroperitoneal approach was comparable to transperitoneal approach. All procedures had high surgical success rates and few complications. CONCLUSION: Outcomes for four surgical approaches used in the UPJO were comparable, with T-RALP being the most recommended approach. Selection between the transperitoneal and retroperitoneal approaches primarily depended on the surgeon's preference. Higher quality evidence is needed to further enhance the result.


Assuntos
Laparoscopia , Procedimentos Cirúrgicos Robóticos , Ureter , Obstrução Ureteral , Humanos , Pelve Renal/cirurgia , Metanálise em Rede , Laparoscopia/métodos , Procedimentos Cirúrgicos Urológicos/métodos , Ureter/cirurgia , Obstrução Ureteral/cirurgia , Procedimentos Cirúrgicos Robóticos/métodos , Resultado do Tratamento
19.
Cell Biol Int ; 47(5): 929-942, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36651331

RESUMO

Previous work showed that FABP5 inhibitors suppressed the malignant progression of prostate cancer cells, and this suppression might be achieved partially by promoting apoptosis. But the mechanisms involved were not known. Here, we investigated the effect of inhibitors on apoptosis and studied the relevant mechanisms. WtrFABP5 significantly reduced apoptotic cells in 22Rv1 and PC3 by 18% and 42%, respectively. In contrast, the chemical inhibitor SB-FI-26 produced significant increases in percentages of apoptotic cells in 22Rv1 and PC3 by 18.8% (±4.1) and 4.6% (±1.1), respectively. The bio- inhibitor dmrFABP5 also did so by 23.1% (±2.4) and 15.8% (±3.0), respectively, in these cell lines. Both FABP5 inhibitors significantly reduced the levels of the phosphorylated nuclear fatty acid receptor PPARγ, indicating that these inhibitors promoted apoptosis-induction sensitivity of the cancer cells by suppressing the biological activity of PPARγ. Thus, the phosphorylated PPARγ levels were reduced by FABP5 inhibitors, the levels of the phosphorylated AKT and activated nuclear factor kapper B (NFκB) were coordinately altered by additions of the inhibitors. These changes eventually led to the increased levels of cleaved caspase-9 and cleaved caspase-3; and thus, increase in the percentage of cells undergoing apoptosis. In untreated prostate cancer cells, increased FABP5 suppressed the apoptosis by increasing the biological activity of PPARγ, which, in turn, led to a reduced apoptosis by interfering with the AKT or NFκB signaling pathway. Our results suggested that the FABP5 inhibitors enhanced the apoptosis-induction of prostate cancer cells by reversing the biological effect of FABP5 and its related pathway.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Masculino , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , PPAR gama/metabolismo , Linhagem Celular Tumoral , Apoptose , Proteínas de Ligação a Ácido Graxo/metabolismo
20.
Inorg Chem ; 62(42): 17182-17190, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37815498

RESUMO

Oxidation and removal of highly toxic sulfides and amines are particularly important for environmental and human security but remain challenging. Here, incorporating an excellent photosensitizer, donor-acceptor-donor (D-A-D)-type 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic (H2L), into metal-organic frameworks (MOFs) has been manifested to promote the charge separation, affording four three-dimensional (3D) MOFs (isostructural 1-Co/1-Zn with Co2/Zn2 units, and 2-Gd/2-Tb with Gd/Tb-cluster chains) as photocatalysts in the visible light-driven air-O2-mediated catalytic oxidation and removal of hazardous phenylsulfides and benzylamines. Impressively, structure-property correlation illustrated that the transition metal centers assembled in MOFs play an important role in the photocatalytic activity, and we can conclude that 1-Zn can be a robust heterogeneous catalyst possessing good light adsorption and fast charge separation in oxidation removal reactions of both benzylamines and phenylsulfides under visible light irradiation and room temperature with excellent activity/selectivity, stability, and reusability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA