Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36840300

RESUMO

Elongator complexes (ELPs) are the protein complexes that promote transcription through histone acetylation in eukaryotic cells and interact with elongating RNA polymerase II (RNAPII). ELPs' role in plant growth and development, signal transduction, and response to biotic and abiotic stresses have been confirmed in model plants. However, the functions of the wheat ELP genes are not well documented. The present study identified 18 members of the ELPs from the wheat genome with a homology search. Further, bioinformatics and transcription patterns in response to different stress conditions were analyzed to dissect their potential regulatory mechanisms in wheat. Gene duplication analysis showed that 18 pairs of ELP paralogous genes were derived from segmental duplication, which was divided into six clades by protein phylogenetic and cluster analysis. The orthologous analysis of wheat TaELP genes showed that TaELP genes may have evolved from orthologous genes of other plant species or closely related plants. Moreover, a variety of cis-acting regulatory elements (CAREs) related to growth and development, hormone response, and biotic and abiotic stresses were identified in the TaELPs' promoter regions. The qRT-PCR analysis showed that the transcription of TaELPs was induced under hormone, salt, and drought stress and during leaf senescence. The TaELP2 gene was silenced with BSMV-VIGS, and TaELP2 was preliminarily verified to be involved in the regulation of wheat leaf senescence. Overall, TaELP genes might be regulated by hormone signaling pathways and response to abiotic stress and leaf senescence, which could be investigated further as potential candidate genes for wheat abiotic stress tolerance and yield improvement.

2.
Biology (Basel) ; 11(6)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35741425

RESUMO

Premature leaf senescence has a profound influence on crop yield and quality. Here, a stable premature senescence mutant (GSm) was obtained from the common wheat (Triticum aestivum L.) cultivar Chang 6878 by mutagenesis with ethyl methanesulfonate. The differences between the GSm mutant and its wild-type (WT) were analyzed in terms of yield characteristics, photosynthetic fluorescence indices, and senescence-related physiological parameters. RNA sequencing was used to reveal gene expression differences between GSm and WT. The results showed that the yield of GSm was considerably lower than that of WT. The net photosynthetic rate, transpiration rate, maximum quantum yield, non-photochemical quenching coefficient, photosynthetic electron transport rate, soluble protein, peroxidase activity, and catalase activity all remarkably decreased in flag leaves of GSm, whereas malondialdehyde content distinctively increased compared with those of WT. The analysis of differentially expressed genes indicated blockade of chlorophyll and carotenoid biosynthesis, accelerated degradation of chlorophyll, and diminished photosynthetic capacity in mutant leaves; brassinolide might facilitate chlorophyll breakdown and consequently accelerate leaf senescence. NAC genes positively regulated the senescence process. Compared with NAC genes, expression of WRKY and MYB genes was induced earlier in the mutant possibly due to increased levels of reactive oxygen species and plant hormones (e.g., brassinolide, salicylic acid, and jasmonic acid), thereby accelerating leaf senescence. Furthermore, the antioxidant system played a role in minimizing oxidative damage in the mutant. These results provides novel insight into the molecular mechanisms of premature leaf senescence in crops.

3.
ACS Nano ; 15(11): 18385-18393, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34739207

RESUMO

Dental diseases resulting from movement disorders and volatile gases are very common. The classic method for detecting occlusal force is effective; however, its function is one-time rather than real-time monitoring, and the technology is very time-consuming. Herein, we report a multifunctional, flexible, and degradable bacterial cellulose/Ti3C2Tx MXene bioaerogel for the accurate detection of occlusal force and early diagnosis of periodontal diseases. Combining the mechanical properties of MXene and the abundant functional groups of bacterial cellulose, 3D porous bioaerogels exhibit both pressure-sensitive and ammonia (NH3)-sensitive responses. By integrating these substances into a flexible array, the resulting device can distinguish the intensity, location, and even the time sequence of the occlusion force; moreover, it can provide NH3 gas and occlusion force response signals. Therefore, this technology is promising for both disease diagnosis and oral health. In addition, the introduction of a renewable biomaterial allows the bioaerogel to degrade completely using a low-concentration hydrogen peroxide solution, making the device environmentally friendly and satisfying the demands for sustainable development.


Assuntos
Celulose , Titânio , Força de Mordida , Gases , Atenção à Saúde
4.
Genes (Basel) ; 12(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34828258

RESUMO

Trehalose-6-phosphate phosphatase (TPP) genes take part in trehalose metabolism and also in stress tolerance, which has been well documented in many species but poorly understood in wheat. The present research has identified a family of 31 TPP genes in Triticum aestivum L. through homology searches and classified them into five clades by phylogenetic tree analysis, providing evidence of an evolutionary status with Hordeum vulgare, Brachypodium distachyon and Oryza sativa. The exon-intron distribution revealed a discrete evolutionary history and projected possible gene duplication occurrences. Furthermore, different computational approaches were used to analyze the physical and chemical properties, conserved domains and motifs, subcellular and chromosomal localization, and three-dimensional (3-D) protein structures. Cis-regulatory elements (CREs) analysis predicted that TaTPP promoters consist of CREs related to plant growth and development, hormones, and stress. Transcriptional analysis revealed that the transcription levels of TaTPPs were variable in different developmental stages and organs. In addition, qRT-PCR analysis showed that different TaTPPs were induced under salt and drought stresses and during leaf senescence. Therefore, the findings of the present study give fundamental genomic information and possible biological functions of the TaTPP gene family in wheat and will provide the path for a better understanding of TaTPPs involvement in wheat developmental processes, stress tolerance, and leaf senescence.


Assuntos
Monoéster Fosfórico Hidrolases/genética , Senescência Vegetal/genética , Estresse Fisiológico/genética , Triticum , Adaptação Fisiológica/genética , Biologia Computacional , Simulação por Computador , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Monoéster Fosfórico Hidrolases/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidade , Trealose/metabolismo , Triticum/genética , Triticum/metabolismo
5.
Nanoscale ; 12(29): 15697-15705, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32672297

RESUMO

An efficient and rapid method is reported for preparing ultra-fine and well-dispersed SnO2 nanoparticles in a large scale. A simple double hydrolysis reaction between SnO32- and Fe3+ ions was masterly used to form a stable colloid system, in which colloidal particles of H2SnO3 with negative charges and Fe(OH)3 with positive charges electrostatically interact with each other and form honeycomb-like "core-shell" units. Through the hydrothermal reaction, the units are easily transformed into SnO2@FeO(OH) structures. Ultra-fine and well-dispersed SnO2 particles with less than 6 nm diameter were finally obtained with a high yield by further etching using hydrochloric acid. When used as anode materials for lithium ion batteries, the ultra-fine SnO2 particles can be easily dispersed into the carbon networks originating from the carbon source of glucose during the hydrothermal reaction. Electrochemical tests confirmed that these ultra-fine SnO2/C materials were endowed with excellent cyclic stability and C-rate performance. Even at a 1.56 A g-1 (2C) high current density, the reversible capacity could be maintained at 710 mA h g-1 after 100 cycles owing to the ultra-fine particle size of SnO2 and the rich carbon networks.

6.
Ying Yong Sheng Tai Xue Bao ; 31(7): 2407-2414, 2020 Jul.
Artigo em Zh | MEDLINE | ID: mdl-32715707

RESUMO

In this study, a pot experiment was carried out to examine the effects of high CO2 concentration, drought and interaction on seedling growth traits, biomass accumulation and physiological characteristics of different stay-green wheat seedlings, with a stay-green wheat variety Yannong 19 and a non stay-green wheat variety Hanxuan 3 as test materials. There were four treatments in the Open Top Chamber with factorial of CO2 concentration (370 µmol·mol-1 vs 550 µmol·mol-1) and drought (45%-55% vs. 75%-85% of field water-holding capacity). Drought significantly inhibited the growth and development of wheat seedlings, while CO2 concentration significantly increased the number of tillers and promoted the growth and development of wheat seedlings. Under drought condition, high CO2 concentration increased the number of tillers of Hanxuan 3 and Yannong 19 by 61.0% and 42.3%, respectively. Under both water conditions, high CO2 concentration significantly increased the biomass of wheat seedlings, and decreased the content of peroxidase and proline in leaves. Under drought condition, high CO2 concentration showed stronger "fertilizer effect". Furthermore, different varieties had different responses to high CO2 concentration, with higher sensitivity of Hanxuan 3 to enhancement of CO2 concentration. Under the scenario of increasing CO2 concentration, the amount of irrigation water applied to a field can be appropriately reduced for efficient use of water resources. Meanwhile, it is necessary to pay attention to the selection of suitable wheat varieties.


Assuntos
Secas , Plântula , Atenção , Dióxido de Carbono , Triticum , Água
7.
Chem Commun (Camb) ; 50(5): 608-10, 2014 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-24281715

RESUMO

A self-powered electrochromic smart window with tunable transmittance driven by dye-sensitized solar cells has been designed, which also acts as a photocharged electrochromic supercapacitor with high areal capacitance and reversible color changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA