Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 32(5): 8379-8388, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439494

RESUMO

Governed by the hairy ball theorem, classical antennas with isotropic responses to linearly polarized radio waves are unrealizable. Also, their calibrations face a causal dilemma. Therefore, radio wave measurements based on classical antennas are challenging to achieve high accuracy. This work shows that the antenna based on Rydberg atoms can theoretically achieve an ideal isotropic response to linearly polarized radio waves; that is, it has zero isotropic deviation. Although this conclusion is straightforward, it is not theoretically clear when complex atomic energy levels are taken into account. Experimental results of isotropic deviation within 5 dB and 0.3 dB possible with optimization in microwave and terahertz wave measurements support the theory and is at least 15 dB improvement than the classical omnidirectional antenna. Combined with the SI traceable and ultrawideband property, the ideal isotropic response will make radio wave measurement based on atomic antenna much more accurate and reliable than the traditional method. This isotropic atomic antenna is an excellent example of what a tailored quantum sensor can realize, but a classical sensor cannot. It has crucial applications in fields such as radio wave electrometry.

2.
Rep Prog Phys ; 86(10)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37604116

RESUMO

Microwave electric field (MW E-field) sensing is important for a wide range of applications in the areas of remote sensing, radar astronomy and communications. Over the past decade, Rydberg atoms have been used in ultrasensitive, wide broadband, traceable, stealthy MW E-field sensing because of their exaggerated response to MW E-fields, plentiful optional energy levels and integratable preparation methods. This review first introduces the basic concepts of quantum sensing, the properties of Rydberg atoms and the principles of quantum sensing of MW E-fields with Rydberg atoms. An overview of this very active research direction is gradually expanding, covering the progress of sensitivity and bandwidth in Rydberg atom-based microwave sensing, superheterodyne quantum sensing with microwave-dressed Rydberg atoms, quantum-enhanced sensing of MW E-field and recent advanced quantum measurement systems and approaches to further improve the performance of MW E-field sensing. Finally, a brief outlook on future development directions is provided.

3.
Opt Express ; 31(12): 19909-19917, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381396

RESUMO

Since its theoretical sensitivity is limited by quantum noise, radio wave sensing based on Rydberg atoms has the potential to replace its traditional counterparts with higher sensitivity and has developed rapidly in recent years. However, as the most sensitive atomic radio wave sensor, the atomic superheterodyne receiver lacks a detailed noise analysis to pave its way to achieve theoretical sensitivity. In this work, we quantitatively study the noise power spectrum of the atomic receiver versus the number of atoms, where the number of atoms is precisely controlled by changing the diameters of flat-top excitation laser beams. The results show that under the experimental conditions that the diameters of excitation beams are less than or equal to 2 mm and the read-out frequency is larger than 70 kHz, the sensitivity of the atomic receiver is limited only by the quantum noise and, in the other conditions, limited by classical noise. However, the experimental quantum-projection-noise-limited sensitivity this atomic receiver reaches is far from the theoretical sensitivity. This is because all atoms involved in light-atom interaction will contribute to noise, but only a fraction of them participating in the radio wave transition can provide valuable signals. At the same time, the calculation of the theoretical sensitivity considers both the noise and signal are contributed by the same amount of atoms. This work is essential in making the sensitivity of the atomic receiver reach its ultimate limit and is significant in quantum precision measurement.

4.
Opt Express ; 29(5): 7916-7924, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726283

RESUMO

Ultra-low frequency noise lasers have been widely used in laser-based experiments. Most narrow-linewidth lasers are implemented by actively suppressing their frequency noise through a frequency noise servo loop (FNSL). The loop bandwidths (LBW) of FNSLs are currently below megahertz, which is gradually tricky to meet application requirements, especially for wideband quantum sensing experiments. This article has experimentally implemented an FNSL with loop-delay-limited 3.5 MHz LBW, which is an order higher than the usual FNSLs. Using this FNSL, we achieved 70 dB laser frequency noise suppression over 100 kHz Fourier frequency range. This technology has broad applications in vast fields where wideband laser frequency noise suppression is inevitable.

5.
Opt Express ; 29(6): 8880-8889, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820329

RESUMO

GaTe nanoflakes have been receiving much research attention recently due to their applications in optoelectronic devices, such as anisotropic non-volatile memory, solar cells, and high-sensitivity photodetectors from the ultraviolet to the visible region. Further applications, however, have been impeded due to the limited understanding of their exciton dynamics. In this work we perform temperature- and power-dependent time-resolved photoluminescence (PL) spectra to comprehensively investigate the exciton dynamics of GaTe nanoflakes. Temperature-dependent PL measurements manifest that spectral profiles of GaTe nanoflakes change dramatically from cryogenic to room temperature, where the bound exciton and donor-to-acceptor pair transition normally disappear above 100 K, while the charged exciton survives to room temperature. The lifetimes of these excitons and their evolution vs temperature have been uncovered by time-resolved PL spectra. Further measurements reveal the entirely different power-dependent exciton behaviors of GaTe nanoflakes between room and cryogenic temperatures. The underlying mechanisms have been proposed to explore the sophisticated exciton dynamics within GaTe nanoflakes. Our results offer a more thorough understanding of the exciton dynamics of GaTe nanoflakes, enabling further progress in engineering GaTe-based applications, such as photodetectors, light-emitting diodes, and nanoelectronics.

6.
Opt Express ; 29(15): 22855-22867, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614564

RESUMO

Au nanoparticles are attractive contrast agents for noninvasive living tissue imaging with deep penetration because of their strong two-photon photoluminescence (TPPL) intensity and excellent biocompatibility. However, the inevitable phototoxicity and huge auto-fluorescence are consistently associated with laser excitation. Therefore, enhancement of TPPL intensity and suppression of backgrounds are always highly desired under the demand of reducing excitation powers. In this work, we develop a double-pulse TPPL (DP-TPPL) scheme with controlled phase differences (Δφ) between the double pulses to significantly improve the signal-to-noise ratio (SNR) of TPPL imaging. Under the modulated phase (Δφ periodically varying between 0-2π), our results show that SNR can be improved from 4.3 to 1715, with an enhancement of up to 400 folds at the integration of 50 ms. More importantly, this enhancement can be unlimitedly lifted by increasing the number of photons or integration times in principle. Further boosting has been achieved by reducing the magnitude of background noises; subsequently, SNR is improved by more than 104 times. Our schemes offer great potential for reducing phototoxicity and extracting extremely weak signals from huge backgrounds and open up a new possibility for a rapid, flexible, and reliable medical diagnosis by TPPL imaging with diminished laser powers.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Sondas Moleculares/química , Imagem Individual de Molécula/métodos , Fluorescência , Lasers
7.
Opt Express ; 26(16): 20835-20847, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30119387

RESUMO

In this paper, optical communication at the single-photon level is experimentally demonstrated by using a multi-channel frequency coding scheme in which the information is decoded by using the single-photons modulation spectrum. By using the modulation spectrum, the coding scheme could work normally in a channel with high loss and noise. Besides, multiple modulation frequency components could be used in a wide bandwidth regardless of frequency aliasing; therefore, the multi-channel frequency coding scheme makes it possible for high-capacity single-photons communication.

8.
ACS Nano ; 15(8): 12966-12974, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34314151

RESUMO

van der Waals (vdW) heterostructures of transition metal dichalcogenides (TMDCs) provide an excellent paradigm for next-generation electronic and optoelectronic applications. However, the reproducible fabrications of vdW heterostructure devices and the boosting of practical applications are severely hindered by their unstable performance, due to the lack of criteria to assess the interlayer coupling in heterostructures. Here we propose a physical model involving ultrafast electron transfer in the heterostructures and provide two criteria, η (the ratio of the transferred electrons to the total excited electrons) and ζ (the relative photoluminescence variation), to evaluate the interlayer coupling by considering the electron transfer in TMDC heterostructures and numerically simulating the corresponding rate equations. We have proved the effectiveness and robustness of two criteria by measuring the pump-probe photoluminescence intensity of monolayer WS2 in the WS2/WSe2 heterostructures. During thermal annealing of WS2/WSe2, ζ varies from negative to positive values and η changes between 0 and 4.5 × 10-3 as the coupling strength enhanced; both of them can well characterize the tuning of interlayer coupling. We also design a scheme to image the interlayer coupling by performing PL imaging at two time delays. Our scheme offers powerful criteria to assess the interlayer coupling in TMDC heterostructures, offering opportunities for the implementation of vdW heterostructures for broadband and high-performance electronic and optoelectronic applications.

9.
Sci Rep ; 7(1): 1895, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28507302

RESUMO

In this paper, we present a novel ultra-narrow linewidth fiber resonator formed by a tunable polarization maintaining (PM) π-phase-shifted fiber Bragg grating and a PM uniform fiber Bragg grating with a certain length of PM single mode fiber patch cable between them. Theoretical prediction shows that this resonator has ultra-narrow linewidth resonant peaks and is easy to realize impedance matching. We experimentally obtain 3 MHz narrow linewidth impedance matched resonant peak in a 7.3 m ultra-long passive fiber cavity. The impedance self-matching characteristic of this resonator also makes itself particularly suitable for use in ultra-sensitive sensors, ultra-narrow band rejection optical filters and fiber lasers applications.

10.
Light Sci Appl ; 5(9): e16144, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30167186

RESUMO

Quantum secure direct communication is an important mode of quantum communication in which secret messages are securely communicated directly over a quantum channel. Quantum secure direct communication is also a basic cryptographic primitive for constructing other quantum communication tasks, such as quantum authentication and quantum dialog. Here, we report the first experimental demonstration of quantum secure direct communication based on the DL04 protocol and equipped with single-photon frequency coding that explicitly demonstrated block transmission. In our experiment, we provided 16 different frequency channels, equivalent to a nibble of four-bit binary numbers for direct information transmission. The experiment firmly demonstrated the feasibility of quantum secure direct communication in the presence of noise and loss.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA