Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neurobiol Dis ; 199: 106574, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914172

RESUMO

Proton magnetic resonance spectroscopy (1H-MRS) allows measuring specific brain metabolic alterations in Huntington's disease (HD), and these metabolite profiles may serve as non-invasive biomarkers associated with disease progression. Despite this potential, previous findings are inconsistent. Accordingly, we performed a meta-analysis on available in vivo1H-MRS studies in premanifest (Pre-HD) and symptomatic HD stages (Symp-HD), and quantified neurometabolic changes relative to controls in 9 Pre-HD studies (227 controls and 188 mutation carriers) and 14 Symp-HD studies (326 controls and 306 patients). Our results indicated decreased N-acetylaspartate and creatine in the basal ganglia in both Pre-HD and Symp-HD. The overall level of myo-inositol was decreased in Pre-HD while increased in Symp-HD. Besides, Symp-HD patients showed more severe metabolism disruption than Pre-HD patients. Taken together, 1H-MRS is important for elucidating progressive metabolite changes from Pre-HD to clinical conversion; N-acetylaspartate and creatine in the basal ganglia are already sensitive at the preclinical stage and are promising biomarkers for tracking disease progression; overall myo-inositol is a possible characteristic metabolite for distinguishing HD stages.

2.
Front Cell Neurosci ; 15: 653487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776653

RESUMO

Objective: Brain-computer interface (BCI) training is becoming increasingly popular in neurorehabilitation. However, around one third subjects have difficulties in controlling BCI devices effectively, which limits the application of BCI training. Furthermore, the effectiveness of BCI training is not satisfactory in stroke rehabilitation. Intermittent theta burst stimulation (iTBS) is a powerful neural modulatory approach with strong facilitatory effects. Here, we investigated whether iTBS would improve BCI accuracy and boost the neuroplastic changes induced by BCI training. Methods: Eight right-handed healthy subjects (four males, age: 20-24) participated in this two-session study (BCI-only session and iTBS+BCI session in random order). Neuroplastic changes were measured by functional near-infrared spectroscopy (fNIRS) and single-pulse transcranial magnetic stimulation (TMS). In BCI-only session, fNIRS was measured at baseline and immediately after BCI training. In iTBS+BCI session, BCI training was followed by iTBS delivered on the right primary motor cortex (M1). Single-pulse TMS was measured at baseline and immediately after iTBS. fNIRS was measured at baseline, immediately after iTBS, and immediately after BCI training. Paired-sample t-tests were used to compare amplitudes of motor-evoked potentials, cortical silent period duration, oxygenated hemoglobin (HbO2) concentration and functional connectivity across time points, and BCI accuracy between sessions. Results: No significant difference in BCI accuracy was detected between sessions (p > 0.05). In BCI-only session, functional connectivity matrices between motor cortex and prefrontal cortex were significantly increased after BCI training (p's < 0.05). In iTBS+BCI session, amplitudes of motor-evoked potentials were significantly increased after iTBS (p's < 0.05), but no change in HbO2 concentration or functional connectivity was observed throughout the whole session (p's > 0.05). Conclusions: To our knowledge, this is the first study that investigated how iTBS targeted on M1 influences BCI accuracy and the acute neuroplastic changes after BCI training. Our results revealed that iTBS targeted on M1 did not influence BCI accuracy or facilitate the neuroplastic changes after BCI training. Therefore, M1 might not be an effective stimulation target of iTBS for the purpose of improving BCI accuracy or facilitate its effectiveness; other brain regions (i.e., prefrontal cortex) are needed to be further investigated as potentially effective stimulation targets.

3.
Front Neurosci ; 15: 722231, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497490

RESUMO

Transcranial magnetic stimulation (TMS) has a wide range of clinical applications, and there is growing interest in neural oscillations and corticospinal excitability determined by TMS. Previous studies have shown that corticospinal excitability is influenced by fluctuations of brain oscillations in the sensorimotor region, but it is unclear whether brain network activity modulates corticospinal excitability. Here, we addressed this question by recording electroencephalography (EEG) and TMS measurements in 32 healthy individuals. The resting motor threshold (RMT) and active motor threshold (AMT) were determined as markers of corticospinal excitability. The least absolute shrinkage and selection operator (LASSO) was used to identify significant EEG metrics and then correlation analysis was performed. The analysis revealed that alpha2 power in the sensorimotor region was inversely correlated with RMT and AMT. Innovatively, graph theory was used to construct a brain network, and the relationship between the brain network and corticospinal excitability was explored. It was found that the global efficiency in the theta band was positively correlated with RMT. Additionally, the global efficiency in the alpha2 band was negatively correlated with RMT and AMT. These findings indicated that corticospinal excitability can be modulated by the power spectrum in sensorimotor regions and the global efficiency of functional networks. EEG network analysis can provide a useful supplement for studying the association between EEG oscillations and corticospinal excitability.

4.
Behav Brain Res ; 407: 113266, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33794226

RESUMO

The ability of motor-inhibitory control is important in daily life. Inhibitory control deficits are commonly observed in psychiatric conditions with enhanced impulsivity. The physiological mechanisms underlying the inhibitory control deficits are not well elucidated. We systematically investigated the relationship between resting-state intracortical inhibition or facilitation and inhibitory control (indicated by stop signal reaction time, SSRT) to determine whether reduced intracortical inhibition or increased intracortical facilitation was related to the poorer inhibitory control. Thirty-three healthy subjects (age: 21.46 ± 1.40 years) participated in this study. We used paired-pulse transcranial magnetic stimulation to induce short intracortical inhibition, intracortical facilitation, long intracortical inhibition, and short intracortical facilitation at rest. SSRT was derived from stop signal task. We performed all measurements in two repeat sessions conducted two weeks apart. A negative correlation between short intracortical inhibition and SSRT was only observed in session 1; however, the correlation did not persist after controlling for short intracortical facilitation. Positive correlation between short intracortical facilitation and SSRT was observed in both sessions, indicating that individuals with greater resting-state short intracortical facilitation tend to have less efficient stopping performance. Our results help explain the inconsistency with respect to the relationship between short intracortical inhibition and SSRT in the existing literature. Short intracortical facilitation may be used as a potential physiological biomarker for motor-inhibitory control, which may have clinical implications for disorders associated with inhibitory control deficits.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Função Executiva/fisiologia , Comportamento Impulsivo/fisiologia , Inibição Psicológica , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Inibição Neural/fisiologia , Estimulação Magnética Transcraniana , Adulto Jovem
5.
Front Neurosci ; 14: 867, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973431

RESUMO

BACKGROUND: Observation of a goal-directed motor action can excite the respective mirror neurons, and this is the theoretical basis for action observation (AO) as a novel tool for functional recovery during stroke rehabilitation. To explore the therapeutic potential of AO for dysphagia, we conducted a task-based functional magnetic resonance imaging (fMRI) study to identify the brain areas activated during observation and execution of swallowing in healthy participants. METHODS: Twenty-nine healthy volunteers viewed the following stimuli during fMRI scanning: an action-video of swallowing (condition 1, defined as AO), a neutral image with a Chinese word for "watching" (condition 2), and a neutral image with a Chinese word for "swallowing" (condition 3). Action execution (AE) was defined as condition 3 minus condition 2. One-sample t-tests were performed to define the brain regions activated during AO and AE. RESULTS: Many brain regions were activated during AO, including the middle temporal gyrus, inferior frontal gyrus, pre- and postcentral gyrus, supplementary motor area, hippocampus, brainstem, and pons. AE resulted in activation of motor areas as well as other brain areas, including the inferior parietal lobule, vermis, middle frontal gyrus, and middle temporal gyrus. Two brain areas, BA6 and BA21, were activated with both AO and AE. CONCLUSION: The left supplementary motor area (BA6) and left middle temporal gyrus (BA21), which contains mirror neurons, were activated in both AO and AE of swallowing. In this study, AO activated mirror neurons and the swallowing network in healthy participants, supporting its potential value in the treatment of dysphagia.

6.
Front Immunol ; 11: 1746, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013828

RESUMO

Innate immune memory is a part of the innate immune system that facilitates the elimination of pathogens. However, it may exacerbate neuropathology. In this study, we found that innate immune memory is detrimental in stroke, because it promotes the acute immune response and exacerbates ischemic infarcts. Mesenchymal stem cell therapy has been widely studied for its therapeutic potential in various diseases including stroke, but whether it diminishes innate immune memory has not been studied. Here, our study demonstrates that, after the activation of innate immune memory by lipopolysaccharide, mesenchymal stem cell therapy can diminish innate immune memory though down-regulation of H3 methylation and subsequently protect against stroke. Our results demonstrate that innate immune memory is detrimental in stroke, and we describe a novel potential therapeutic target involving the use of mesenchymal stem cells to treat stroke patients.


Assuntos
Encéfalo/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , AVC Isquêmico/cirurgia , Lipopolissacarídeos/toxicidade , Transplante de Células-Tronco Mesenquimais , AVC Trombótico/cirurgia , Cordão Umbilical/citologia , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , AVC Isquêmico/imunologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Lipopolissacarídeos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/metabolismo , Microglia/patologia , AVC Trombótico/imunologia , AVC Trombótico/metabolismo , AVC Trombótico/patologia
7.
Brain Stimul ; 13(3): 891-899, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32289722

RESUMO

BACKGROUND: Brain mapping is fundamental to understanding brain organization and function. However, a major drawback to the traditional Brodmann parcellation technique is the reliance on the use of postmortem specimens. It has therefore historically been difficult to make any comparison regarding functional data from different regions or hemispheres within the same individual. Moreover, this method has been significant limited by subjective boundaries and classification criteria and therefore suffer from reproducibility issues. The development of transcranial magnetic stimulation (TMS) offers an alternative approach to brain mapping, specifically the motor cortical regions by eliciting quantifiable functional reactions. OBJECTIVE: To precisely describe the motor cortical topographic representation of pharyngeal constrictor musculature using TMS and to further map the brain for use as a tool to study brain plasticity. METHODS: 51 healthy subjects (20 male/31 female, 19-26 years old) were tested using single-pulse TMS combined with intraluminal catheter-guided high-resolution manometry and a standardized grid cap. We investigated various parameters of the motor-evoked potential (MEP) that include the motor map area, amplitude, latency, center of gravity (CoG) and asymmetry index. RESULTS: Cortically evoked response latencies were similar for the left and right hemispheres at 6.79 ± 0.22 and 7.24 ± 0.27 ms, respectively. The average scalp positions (relative to the vertex) of the pharyngeal motor cortical representation were 10.40 ± 0.19 (SE) cm medio-lateral and 3.20 ± 0.20 (SE) cm antero-posterior in the left hemisphere and 9.65 ± 0.24 (SE) cm medio-lateral and 3.18 ± 0.23 (SE) cm antero-posterior in the right hemisphere. The mean motor map area of the pharynx in the left and right hemispheres were 9.22 ± 0.85(SE) cm2and 10.12 ± 1.24(SE) cm2, respectively. The amplitudes of the MEPs were 35.94 ± 1.81(SE)uV in the left hemisphere and 34.49 ± 1.95(SE)uV in the right hemisphere. By comparison, subtle but consistent differences in the degree of the bilateral hemispheric representation were also apparent both between and within individuals. CONCLUSION: The swallowing musculature has a bilateral motor cortical representation across individuals, but is largely asymmetric within single subjects. These results suggest that TMS mapping using a guided intra-pharyngeal EMG catheter combined with a standardized gridded cap might be a useful tool to localize brain function/dysfunction by linking brain activation to the corresponding physical reaction.


Assuntos
Mapeamento Encefálico/métodos , Córtex Motor/fisiologia , Faringe/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Deglutição/fisiologia , Eletromiografia/métodos , Potencial Evocado Motor/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Manometria/métodos , Faringe/inervação , Tempo de Reação/fisiologia , Reprodutibilidade dos Testes , Adulto Jovem
8.
Neurosci Lett ; 735: 135197, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32590044

RESUMO

BACKGROUND: Lymphatic vessels (LVs) of meninges and lymphatic drainage in the brain have been investigated previously. Here, we examined the role of continuous theta burst stimulation (CTBS) in the modulation of meningeal LVs. METHODS: To explore the effects of CTBS on meningeal LVs, the diameters of LVs were measured between a real CTBS group and sham CTBS group of wild-type male mice. Vascular endothelial growth factor-C (VEGF-C) expression was subsequently calculated in both groups to account for lymphatic changes after CTBS. Sunitinib was administered by 3-day oral gavage to inhibit the VEGF receptor (VEGFR), and the effects of CTBS were further examined in the following groups: vehicle with real CTBS, vehicle with sham CTBS, sunitinib treatment with real CTBS, and sunitinib treatment with sham CTBS. RESULTS: The lymphatic vessels were augmented, and the level of VEGF-C in meninges increased after CTBS. CTBS dilated meningeal lymphatic vessels were impaired after the VEGF-C/VEGFR3 pathway was blocked. CONCLUSIONS: CTBS can dilate meningeal lymphatic vessels by up-regulating VEGF-C in meninges.


Assuntos
Sistema Glinfático/metabolismo , Vasos Linfáticos/metabolismo , Meninges/metabolismo , Ritmo Teta/fisiologia , Regulação para Cima/fisiologia , Fator C de Crescimento do Endotélio Vascular/biossíntese , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Magnética Transcraniana/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA